Skip to main content
Log in

CrOx–ZrO2–SiO2 Catalysts for Nonoxidative Propane Dehydrogenation, Prepared by Impregnation and One-Step Precipitation of the Components

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Catalysts of the general composition CrOx–ZrO2–SiO2 were prepared by two procedures: (1) one-step precipitation of all the components and (2) introduction of CrOx by impregnation of the ZrO2–SiO2 support. The CrOx content was varied from 4 to 9 wt % in terms of the Cr2O3 stoichiometry. The catalysts were characterized by X-ray diffraction analysis, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction with hydrogen, thermal analysis, and electron microscopy. The catalytic activity of the catalysts in nonoxidative propane dehydrogenation in a flow-through system with a fixed catalyst bed was compared. The one-step synthesis method ensures uniform distribution of chromium oxides in the catalyst. The presence of the silica precursor in the course of precipitation inhibits the Cr2O3 and ZrO2 crystallization and ensures close contact of coordination-unsaturated Zr4+ sites with Cr3+ sites on the surface; therefore, the catalysts prepared by the one-step method are more active. The low activity of the catalysts prepared by impregnation is caused by the formation of coarse Cr2O3 particles heterogeneously distributed on the surface. In the course of nonoxidative propane hydrogenation, the surface of the catalysts undergoes coking, which leads to a decrease in their activity. Short treatment in air at 550°С virtually fully restores the activity of the catalysts prepared by the one-step method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Chen, S., Chang, X., Sun, G., Zhang, T., Xu, Y., Wang, Y., Pei, C., and Gong, J., Chem. Soc. Rev., 2021, vol. 50, pp. 3315–3354. https://doi.org/10.1039/D0CS00814A

    Article  CAS  PubMed  Google Scholar 

  2. Sattler, J.J.H.B., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M., Chem. Rev., 2014, vol. 114, pp. 10613–10653. https://doi.org/10.1021/cr5002436

    Article  CAS  PubMed  Google Scholar 

  3. Feng, B., Wei, Y.-C., Song, W.-Y., and Xu, C.-M., Petrol. Sci., 2022, vol. 19, pp. 819–838. https://doi.org/10.1016/j.petsci.2021.09.015

    Article  CAS  Google Scholar 

  4. Otroshchenko, T., Jiang, G., Kondratenko, V.A., Rodemerck, U., and Kondratenko, E.V., Chem. Soc. Rev., 2021, vol. 50, pp. 473–527. https://doi.org/10.1039/D0CS01140A

    Article  CAS  PubMed  Google Scholar 

  5. Siahvashi, A., Chesterfield, D., and Adesina, A.A., Ind. Eng. Chem. Res., 2013, vol. 52, pp. 4017–4026. https://doi.org/10.1021/ie302392h

    Article  CAS  Google Scholar 

  6. Atanga, M.A., Rezaei, F., Jawad, A., Fitch, M., and Rownaghi, A.A., Appl. Catal. B, 2018, vol. 220, pp. 429–445. https://doi.org/10.1016/j.apcatb.2017.08.052

    Article  CAS  Google Scholar 

  7. Huš, M., Kopač, D., and Likozar, B., J. Catal., 2020, vol. 386, pp. 126–138. https://doi.org/10.1016/j.jcat.2020.03.037

    Article  CAS  Google Scholar 

  8. Nawaz, Z., Rev. Chem. Eng., 2015, vol. 31, pp. 413–436. https://doi.org/10.1515/revce-2015-0012

    Article  CAS  Google Scholar 

  9. Yang, M.-L., Zhu, Y.-A., Zhou, X.-G., Sui, Z.-J., and Chen, D., ACS Catal., 2012, vol. 2, pp. 1247–1258. https://doi.org/10.1021/cs300031d

    Article  CAS  Google Scholar 

  10. Büchele, S., Zichittella, G., Kanatakis, S., Mitchell, S., and Pérez-Ramírez, J., ChemCatChem, 2021, vol. 13, pp. 2599–2608. https://doi.org/10.1002/cctc.202100208

    Article  CAS  Google Scholar 

  11. Kopač, D., Likozar, B., and Huš, M., Appl. Surf. Sci., 2022, vol. 575, ID 151653. https://doi.org/10.1016/j.apsusc.2021.151653

    Article  CAS  Google Scholar 

  12. Sattler, J.J.H.B., González-Jiménez, I.D., Mens, A.M., Arias, M., Visser, T., and Weckhuysen, B.M., Chem. Commun., 2013, vol. 49, pp. 1518–1520. https://doi.org/10.1039/C2CC38978A

    Article  CAS  Google Scholar 

  13. Fridman, V.Z. and Xing, R., Ind. Eng. Chem. Res., 2017, vol. 56, pp. 7937–7947. https://doi.org/10.1021/acs.iecr.7b01638

    Article  CAS  Google Scholar 

  14. Botavina, M., Barzan, C., Piovano, A., Braglia, L., Agostini, G., Martra, G., and Groppo, E., Catal. Sci. Technol., 2017, vol. 7, pp. 1690–1700. https://doi.org/10.1039/C7CY00142H

    Article  CAS  Google Scholar 

  15. Otroshchenko, T., Kondratenko, V.A., Rodemerck, U., Linke, D., and Kondratenko, E.V., J. Catal., 2017, vol. 348, pp. 282–290. https://doi.org/10.1016/j.jcat.2017.02.016

    Article  CAS  Google Scholar 

  16. He, D., Zhang, Y., Yang, S., Mei, Y., and Luo, Y., ChemCatChem, 2018, vol. 10, pp. 5434–5440. https://doi.org/10.1002/cctc.201801598

    Article  CAS  Google Scholar 

  17. Otroshchenko, T.P., Rodemerck, U., Linke, D., and Kondratenko, E.V., J. Catal., 2017, vol. 356, pp. 197–205. https://doi.org/10.1016/j.jcat.2017.10.012

    Article  CAS  Google Scholar 

  18. Han, S., Otroshchenko, T., Zhao, D., Lund, H., Rockstroh, N., Vuong, T.H., Rabeah, J., Rodemerck, U., Linke, D., Gao, M., Jiang, G., and Kondratenko, E.V., Appl. Catal. A, 2020, vol. 590, ID 117350. https://doi.org/10.1016/j.apcata.2019.117350

    Article  CAS  Google Scholar 

  19. Zhang, Y., Zhao, Y., Otroshchenko, T., Lund, H., Pohl, M.-M., Rodemerck, U., Linke, D., Jiao, H., Jiang, G., and Kondratenko, E.V., Nature Commun., 2018, vol. 9, ID 3794. https://doi.org/10.1038/s41467-018-06174-5

    Article  CAS  Google Scholar 

  20. Zubkov, A., Bugrova, T., Salaev, M., and Mamontov, G., Crystals, 2021, vol. 11, ID 1435. https://doi.org/10.3390/cryst11111435

    Article  CAS  Google Scholar 

  21. Jeon, N., Choe, H., Jeong, B., and Yun, Y., Catal. Today, 2020, vol. 352, pp. 337–344. https://doi.org/10.1016/j.cattod.2019.12.012

    Article  Google Scholar 

  22. Golubina, E.V., Kaplin, I.Y., Gorodnova, A.V., Lokteva, E.S., Isaikina, O.Y., and Maslakov, K.I., Molecules, 2022, vol. 27, ID 6095. https://doi.org/10.3390/molecules27186095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ciszak, C., Mermoux, M., Gutierrez, G., Leprêtre, F., Duriez, C., Popa, I., Fayette, L., and Chevalier, S., J. Raman Spectrosc., 2019, vol. 50, pp. 425–435. https://doi.org/10.1002/jrs.5513

    Article  CAS  Google Scholar 

  24. Marinković Stanojević, Z.V., Romčević, N., and Stojanović, B., J. Eur. Ceram. Soc., 2007, vol. 27, pp. 903–907. https://doi.org/10.1016/j.jeurceramsoc.2006.04.057

    Article  CAS  Google Scholar 

  25. Chakrabarti, A., Gierada, M., Handzlik, J., and Wachs, I.E., Top. Catal., 2016, vol. 59, pp. 725–739. https://doi.org/10.1007/s11244-016-0546-6

    Article  CAS  Google Scholar 

  26. Ayari, F., Mhamdi, M., Álvarez-Rodríguez, J., Ruiz, A.R.G., Delahay, G., and Ghorbel, A., Appl. Catal. B, 2013, vols. 134–135, pp. 367–380. https://doi.org/10.1016/j.apcatb.2013.01.026

    Article  CAS  Google Scholar 

  27. Lee, E.L. and Wachs, I.E., J. Phys. Chem. C, 2007, vol. 111, pp. 14410–14425. https://doi.org/10.1021/jp0735482

    Article  CAS  Google Scholar 

  28. Dementjev, A.P., Ivanova, O.P., Vasilyev, L.A., Naumkin, A.V., Nemirovsky, D.M., and Shalaev, D.Y., J. Vac. Sci. Technol. A, 1994, vol. 12, pp. 423–427. https://doi.org/10.1116/1.579258

    Article  CAS  Google Scholar 

  29. Steinberger, R., Duchoslav, J., Greunz, T., Arndt, M., and Stifter, D., Corros. Sci., 2015, vol. 90, pp. 562–571. https://doi.org/10.1016/j.corsci.2014.10.049

    Article  CAS  Google Scholar 

  30. Biesinger, M.C., Brown, C., Mycroft, J.R., Davidson, R.D., and McIntyre, N.S., Surf. Interface Anal., 2004, vol. 36, pp. 1550–1563. https://doi.org/10.1002/sia.1983

    Article  CAS  Google Scholar 

  31. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., and Smart, R.S.C., Appl. Surf. Sci., 2011, vol. 257, pp. 2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  32. Wichterlová, B., Krajčíková, L., Tvarůžková, Z., and Beran, S., J. Chem. Soc., Faraday Trans. 1, 1984, vol. 80, pp. 2639–2645. https://doi.org/10.1039/F19848002639

    Article  Google Scholar 

  33. Wang, F., Fan, J.-L., Zhao, Y., Zhang, W.-X., Liang, Y., Lu, J.-Q., Luo, M.-F., and Wang, Y.-J., J. Fluorine Chem., 2014, vol. 166, pp. 78–83. https://doi.org/10.1016/j.jfluchem.2014.07.030

    Article  CAS  Google Scholar 

  34. Bai, P.T., Manokaran, V., Saiprasad, P.S., and Srinath, S., Procedia Eng., 2015, vol. 127, pp. 1338–1345. https://doi.org/10.1016/j.proeng.2015.11.492

    Article  CAS  Google Scholar 

  35. Zhong, L., Yu, Y., Cai, W., Geng, X., and Zhong, Q., Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 15036–15045. https://doi.org/10.1039/C5CP00896D

    Article  CAS  PubMed  Google Scholar 

  36. Kanervo, J.M. and Krause, A.O.I., J. Phys. Chem. B, 2001, vol. 105, pp. 9778–9784. https://doi.org/10.1021/jp0114079

    Article  CAS  Google Scholar 

  37. Ferrari, A.C., Solid State Commun., 2007, vol. 143, pp. 47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  38. Deng, C.-H., Gong, J.-L., Zhang, P., Zeng, G.-M., Song, B., and Liu, H.-Y., J. Colloid Interface Sci., 2017, vol. 488, pp. 26–38. https://doi.org/10.1016/j.jcis.2016.10.078

    Article  CAS  PubMed  Google Scholar 

  39. Reich, S. and Thomsen, C., Philos. Trans. R. Soc. A, 2004, vol. 362, pp. 2271–2288. https://doi.org/10.1098/rsta.2004.1454

    Article  CAS  Google Scholar 

  40. Nakamizo, M., Kammereck, R., and Walker, P.L., Carbon, 1974, vol. 12, pp. 259–267. ttps://doi.org/10.1016/0008-6223(74)90068-2

    Article  CAS  Google Scholar 

  41. Zhou, J., Zhao, J., Zhang, J., Zhang, T., Ye, M., and Liu, Z., Chin. J. Catal., 2020, vol. 41, pp. 1048–1061. https://doi.org/10.1016/S1872-2067(20)63552-5

    Article  CAS  Google Scholar 

  42. Santhosh Kumar, M., Hammer, N., Rønning, M., Holmen, A., Chen, D., Walmsley, J.C., and Øye, G., J. Catal., 2009, vol. 261, pp. 116–128. https://doi.org/10.1016/j.jcat.2008.11.014

    Article  CAS  Google Scholar 

  43. Zhao, Y., Sohn, H., Hu, B., Niklas, J., Poluektov, O.G., Tian, J., Delferro, M., and Hock, A.S., ACS Omega, 2018, vol. 3, pp. 11117–11127. https://doi.org/10.1021/acsomega.8b00862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Macnaughtan, M.L., Soo, H.S., and Frei, H., J. Phys. Chem. C, 2014, vol. 118, pp. 7874–7885. https://doi.org/10.1021/jp5014994

    Article  CAS  Google Scholar 

  45. Fridman, V.Z., Xing, R., and Severance, M., Appl. Catal. A, 2016, vol. 523, pp. 39–53. https://doi.org/10.1016/j.apcata.2016.05.008

    Article  CAS  Google Scholar 

  46. Conley, M.P., Delley, M.F., Núñez-Zarur, F., Comas-Vives, A., and Copéret, C., Inorg. Chem., 2015, vol. 54, pp. 5065–5078. https://doi.org/10.1021/ic502696n

    Article  CAS  PubMed  Google Scholar 

  47. Sattler, J.J.H.B., Mens, A.M., and Weckhuysen, B.M., ChemCatChem, 2014, vol. 6, pp. 3139–3145. https://doi.org/10.1002/cctc.201402649

    Article  CAS  Google Scholar 

  48. Węgrzyniak, A., Jarczewski, S., Węgrzynowicz, A., Michorczyk, B., Kuśtrowski, P., and Michorczyk, P., Nanomaterials, 2017, vol. 7, ID 249. https://doi.org/10.3390/nano7090249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge support from the Lomonosov Moscow State University Program of Development for providing access to the XPS and TEM facilities

Funding

The study was financially supported by the Russian Science Foundation (project no. 22-23-00445).

Author information

Authors and Affiliations

Authors

Contributions

E.V. Golubina: concept of the study, SEM examination, TPR-Н2 experiments, and interpretation of the results; I.Yu. Kaplin: synthesis of the samples and study of their catalytic activity and stability; A.V. Gorodnova: synthesis of the samples and study of their catalytic activity; E.S. Lokteva: formulation of the research direction, interpretation of the results of X-ray diffraction, SEM, and thermal analysis; O.Ya. Isaikina: Raman study of the samples and interpretation of the results; K.I. Maslakov: XPS study of the samples and interpretation of the results.

Corresponding author

Correspondence to E. V. Golubina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1365–1381, August, 2022 https://doi.org/10.31857/S0044461822110020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubina, E.V., Kaplin, I.Y., Gorodnova, A.V. et al. CrOx–ZrO2–SiO2 Catalysts for Nonoxidative Propane Dehydrogenation, Prepared by Impregnation and One-Step Precipitation of the Components. Russ J Appl Chem 95, 1677–1692 (2022). https://doi.org/10.1134/S1070427222110027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222110027

Keywords:

Navigation