Skip to main content
Log in

Hybrid Materials Based on Carbon Fabric Modified with Transition Metal Oxides and the Possibility of Their Use as Electrode Materials for Supercapacitors

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The features of the formation of hybrid electrode materials based on carbon fabric modified with oxides of molybdenum, cobalt, nickel, iron, and tungsten upon polarization by an alternating asymmetric current are studied. It is shown that the fabricated hybrid materials are multiphase systems, the morphology of their surface is characterized by a fragmentary structure. A study of the electrochemical behavior of the produced hybrid materials was condicted during their cycling in an alkaline electrolyte. The calculated specific capacity ​​were 472, 1018, 1496, 1990 mF cm–2 at current densities of 30, 12, 6, 3 mA cm–2, respectively. The resulting hybrid electrode materials retain their specific capacity up to 77% after 1000 charge/discharge cycles, which suggests the possibility of their use in symmetrical supercapacitors with an alkaline electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Frackowiak, E. and Béguin, F., Supercapacitors, Poznan: Wiley-VCH Verlag GmbH & Co, 2013, pp. 71–75.

    Google Scholar 

  2. Raj, B., Asiri, A., Wu, J., and Anandan, S., J. Alloys Compd., 2015, vol. 636, pp. 234–240. https://doi.org/10.1016/j.jallcom.2015.02.164

    Article  CAS  Google Scholar 

  3. Tao, T., Chen, Q., Hu, H., and Chen, Y., Mater. Lett., 2012, vol. 66, pp. 102–105. https://doi.org/10.1016/j.matlet.2011.08.028

    Article  CAS  Google Scholar 

  4. Zhou, Y., Zou, X., Zhao, Z., Xiang, B., and Zhang, Y., Ceram. Int., 2018, vol. 44, pp. 16900–16907. https://doi.org/10.1016/j.ceramint.2018.06.128

    Article  CAS  Google Scholar 

  5. Wang, Y., He, P., Lei, W., Dong, F., and Zhang T., Compos. Sci. Technol., 2014, vol. 103, pp. 16–21. https://doi.org/10.1016/j.compscitech.2014.08.009

    Article  CAS  Google Scholar 

  6. Liu, P., Yang, M., Zhou, S., Huang, Y., and Zhu, Y., Electrochim. Acta, 2019, vol. 294, pp. 383–390. https://doi.org/10.1016/j.electacta.2018.10.112

    Article  CAS  Google Scholar 

  7. Ding, Y., Tang, S., Han, R., Zhang S, Pan, G., and Meng, X., Sci. Rep., 2020, vol. 10, ID 11023. https://doi.org/10.1038/s41598-020-68032-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gurova, O., Sysoev, V., Lobiak, E., Makarova, A., Asanov , I., Okotrub, A., Kulik, L., and Bulusheva, L., Nanomater., 2021, vol. 11, ID 1135. https://doi.org/10.3390/nano11051135

    Article  CAS  Google Scholar 

  9. Nawaz, B., Ullah, M., Ali, G., Energies, 2021, vol. 14, ID 3237. https://doi.org/10.3390/en14113237

    Article  CAS  Google Scholar 

  10. Barczak, M. and Bandosz, T., Electrochim. Acta, 2019, vol. 305, pp. 125–136. https://doi.org/10.1016/j.electacta.2019.03.014

    Article  CAS  Google Scholar 

  11. Wang, Y., Du, Z., Xiao, J., Cen, W., and Yuan, S., Electrochim. Acta, 2021, vol. 386, ID 138486. https://doi.org/10.1016/j.electacta.2021.138486

    Article  CAS  Google Scholar 

  12. Wang, Y., Li, X., Wang, Y., Liu, Y., Bai, Y., Liu, R., and Yuan, G., Electrochim. Acta, 2019, vol. 299, pp. 12–18. https://doi.org/10.1016/j.electacta.2018.12.181

    Article  CAS  Google Scholar 

  13. Lu, F., Wang, J., Sun, X., and Chang, Z., Mater. Des., 2020, vol. 189, ID 108503. https://doi.org/10.1016/j.matdes.2020.108503

    Article  CAS  Google Scholar 

  14. Allado, K., Liu, M., Jayapalan, A., Arvapalli, D., Nowlin, K., and We, J., Energy Fuels, 2021, vol. 35, pp. 8396–8405. https://doi.org/10.1021/acs.energyfuels.1c00556

    Article  CAS  Google Scholar 

  15. Han, N., Choi, Y., Park, D., Ryu, J., and Jeong, Y, Compos. Sci. Technol., 2020, vol. 196, ID 108212. https://doi.org/10.1016/j.compscitech.2020.108212

    Article  CAS  Google Scholar 

  16. Chen, L., Chen, L., Ai, Q., Li, D., Si, P., Feng, J., Zhang, L., Li, Y., Lou, J., and Ci, L., Chem. Eng. J., 2018, vol. 334, pp. 184–190. https://doi.org/10.1016/j.cej.2017.10.038

    Article  CAS  Google Scholar 

  17. Bespalova, Z. and Khramenkova, A., Nanosyst. Physics, Chem. Math., 2016, vol. 7 P. 433–450. https://doi.org/10.17586/2220-8054-2016-7-3-433-450

    Article  CAS  Google Scholar 

  18. Pat. SSSR 125991 (publ. 1960).

  19. Bespalova, Z.I. and Khramenkova, A.V., Russ. J. Appl. Chem., 2013, vol. 86. N 4, pp. 539–544. https://doi.org/10.1134/S1070427213040150

    Article  CAS  Google Scholar 

  20. Spravochnik po rentgenostrukturnomu analizu polikristallov (Handtbook on X-Ray Analysis of Polycrystalls), Mirkin, L.I., Umansky, Ya.S., Moscow: Fizmatgiz, 1961, pp. 437–563.

  21. Zhang, Y., Lin, B., Sun, Y., Han, P., Wang, J., Ding, X., Zhang, X., Yang, H., Electrochim. Acta, 2016, vol. 188, pp. 490–498. https://doi.org/10.1016/j.electacta.2015.12.037

    Article  CAS  Google Scholar 

  22. Wu, J., Li, X., Zhu, Y., Yi, T., Zhang, J., Xie, Y., Ceram. Int., 2016, vol. 42, pp. 9250–9256. https://doi.org/10.1016/j.ceramint.2016.03.027

    Article  CAS  Google Scholar 

  23. Song, P., Hea, X., Tao, J., Shen, X., Yan, Z., Ji, Z., Yuan, A., Zhu, G., Kong, L., Appl. Surf. Sci., 2021, vol. 535, ID 147755. https://doi.org/10.1016/j.apsusc.2020.147755

    Article  CAS  Google Scholar 

  24. Xu, M., Fu, N., Wang, X., Yang, Z., J. Mater. Sci. Mater. Electron, 2020, vol. 31, pp. 16027–16036. https://doi.org/10.1007/s10854-020-04165-1

    Article  CAS  Google Scholar 

  25. Liu, Y., Jiao, Y., Yin, B., Zhang, S., Qua, F., Wu, X., J. Mater. Chem. A, 2015, vol. 3, pp. 3676–3682. https://doi.org/10.1039/C4TA06339B

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the grant of the President of the Russian Federation SP-3068.2021.1.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 121031700314-5.

Determination of the specific surface area of hybrid electrode materials was performed using the equipment of the Center for Collective Use. D. I. Mendeleev under the government assignment 13 TsKP.21.0009.

Author information

Authors and Affiliations

Authors

Contributions

A.V. Khramenkova: development of a method for the synthesis of hybrid materials based on transition metal oxides on the surface of a carbon fabric, the concept of the article, analysis of experimental data, writing the manuscript; A.I. Izvarin: synthesis of hybrid materials; O.A. Finaeva: literature review; V.V. Moshchenko: study of the stability of hybrid electrode materials during long-term cycling; K.M. Popov: conducting electrochemical studies by the method of cyclic voltammetry.

Corresponding author

Correspondence to A. V. Khramenkova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 509–516, March, 2022 https://doi.org/10.31857/S0044461822040120

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramenkova, A.V., Izvarin, A.I., Finaeva, O.A. et al. Hybrid Materials Based on Carbon Fabric Modified with Transition Metal Oxides and the Possibility of Their Use as Electrode Materials for Supercapacitors. Russ J Appl Chem 95, 568–574 (2022). https://doi.org/10.1134/S1070427222040139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222040139

Keywords:

Navigation