Skip to main content

A Review of Supercapacitor Energy Storage Using Nanohybrid Conducting Polymers and Carbon Electrode Materials

  • Chapter
  • First Online:
Conducting Polymer Hybrids

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

With the advancement of electronics and mobile technologies, supercapacitors are becoming the significant energy storage device. The properties of supercapacitor depend on electrochemical properties, electrochemical stability, surface area, and electrical conductivity of advanced electrode materials. Nanohybrid materials based on conducting polymers and carbon has been substantially explored over the preceding years. Strong hybridization with carbon materials, especially with graphene has been found in effectively improving the enactment of a supercapacitor with the control of size and morphology of nanoparticles, enrichment of the electron transport by adding nanocarbons, and modification of the electronic structures through charge transfer process. We have presented an overview of supercapacitor characteristics of hybrid nanostructures with conducting polymers, and carbon materials as electrode materials and extensively discusses their future trend for practical supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen GZ (2013) Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog Nat Sci Mater Int 23:245–255

    Article  CAS  Google Scholar 

  2. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  3. Rolison DR, Nazar LF (2011) Electrochemical energy storage to power the 21st century. MRS Bull 36:486–493

    Article  CAS  Google Scholar 

  4. Sun Y, Shi G (2013) Graphene/polymer composites for energy applications. J Polym Sci Part B Polym Phys 51:231–253

    Article  CAS  Google Scholar 

  5. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  6. Burke AF (2007) Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc IEEE 95:806–820

    Article  Google Scholar 

  7. Conway BE (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, Berlin

    Google Scholar 

  8. Reisch MS (2015) Supercapacitor makers charge ahead: materials research advances promise to make the energy storage device a complement to batteries. C&EN 93:20–21

    Google Scholar 

  9. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834

    Article  CAS  Google Scholar 

  10. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  11. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803

    Article  CAS  Google Scholar 

  12. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    Article  CAS  Google Scholar 

  13. Vangari M, Pryor T, Jiang L (2012) Supercapacitors: review of materials and fabrication methods. J Energy Eng 2:72–79

    Google Scholar 

  14. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T et al (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34:4889–4899

    Article  CAS  Google Scholar 

  15. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  CAS  Google Scholar 

  16. Lu P, Xue D, Yang H, Liu Y (2013) Supercapacitor and nanoscale research towards electrochemical energy storage. Int J Smart Nano Mater 4:2–26

    Article  CAS  Google Scholar 

  17. Long JW, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes. MRS Bull 36:513–522

    Article  CAS  Google Scholar 

  18. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Google Scholar 

  19. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    CAS  Google Scholar 

  20. Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sources 97:812–815

    Article  Google Scholar 

  21. Rudge A, Raistrick I, Gottesfeld S, Ferraris JP (1994) A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim Acta 39:273–287

    Article  CAS  Google Scholar 

  22. Khosrozadeh A, Xing M, Wang Q (2014) A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Appl Energy 153:87–93

    Google Scholar 

  23. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418

    Article  CAS  Google Scholar 

  24. Shen H, Liu E, Xiang X, Huang Z, Tian Y, Wu Y et al (2012) A novel activated carbon for supercapacitors. Mater Res Bull 47:662–666

    Article  CAS  Google Scholar 

  25. Gamby J, Taberna P, Simon P, Fauvarque J, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  26. Saliger R, Fischer U, Herta C, Fricke J (1998) High surface area carbon aerogels for supercapacitors. J Non-Cryst Solids 225:81–85

    Article  CAS  Google Scholar 

  27. Kalinathan K, DesRoches DP, Liu X, Pickup PG (2008) Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities. J Power Sources 181:182–185

    Article  CAS  Google Scholar 

  28. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  29. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y et al (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994

    Article  CAS  Google Scholar 

  30. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876

    Article  CAS  Google Scholar 

  31. Sun Y-P, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  32. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  33. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M et al (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  34. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5:480–499

    Article  CAS  Google Scholar 

  35. Davies A, Yu A (2011) Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can J Chem Eng 89:1342–1357

    Article  CAS  Google Scholar 

  36. Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  37. Martín A, Escarpa A (2014) Graphene: the cutting–edge interaction between chemistry and electrochemistry. TrAC Trends Anal Chem 56:13–26

    Article  Google Scholar 

  38. Wang H, Dai H (2013) Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chem Soc Rev 42:3088–3113

    Article  CAS  Google Scholar 

  39. Fialkov A (2000) Carbon application in chemical power sources. Russ J Electrochem 36:345–366

    Article  CAS  Google Scholar 

  40. Markoulidis F, Lei C, Lekakou C, Figgemeier E, Duff D, Khalil S et al (2012) High-performance supercapacitor cells with activated carbon/MWNT nanocomposite electrodes. In: IOP conference series: materials science and engineering, p 012021

    Google Scholar 

  41. Pandolfo A, Hollenkamp A (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  42. Selvakumar M, Krishna Bhat D (2008) Activated carbon-polyethylenedioxythiophene composite electrodes for symmetrical supercapacitors. J Appl Polym Sci 107:2165–2170

    Article  CAS  Google Scholar 

  43. Sonia T, Mini P, Nandhini R, Sujith K, Avinash B, Nair S et al (2013) Composite supercapacitor electrodes made of activated carbon/PEDOT: PSS and activated carbon/doped PEDOT. Bull Mater Sci 36:547–551

    Article  CAS  Google Scholar 

  44. Castellano RJ, Akin C, Giraldo G, Kim S, Fornasiero F, Shan JW (2015) Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned carbon-nanotube/polymer composites. J Appl Phys 117:214306

    Article  Google Scholar 

  45. Khomenko V, Frackowiak E, Beguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506

    Article  CAS  Google Scholar 

  46. Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta 56:7460–7466

    Article  CAS  Google Scholar 

  47. Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly (3, 4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65:295–301

    Article  CAS  Google Scholar 

  48. Lu X, Dou H, Yuan C, Yang S, Hao L, Zhang F et al (2012) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sources 197:319–324

    Article  CAS  Google Scholar 

  49. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  50. Wu M, Snook GA, Gupta V, Shaffer M, Fray DJ, Chen GZ (2005) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem 15:2297–2303

    Article  CAS  Google Scholar 

  51. Branzoi V, Branzoi F, Pilan L (2010) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Surf Interface Anal 42:1266–1270

    Article  CAS  Google Scholar 

  52. Murugan AV (2006) Novel organic–inorganic poly (3,4-ethylenedioxythiophene) based nanohybrid materials for rechargeable lithium batteries and supercapacitors. J Power Sources 159:312–318

    Article  Google Scholar 

  53. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    Article  CAS  Google Scholar 

  54. Yang X-F, Wang G-C, Wang R-Y, Li X-W (2010) A novel layered manganese oxide/poly (aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim Acta 55:5414–5419

    Article  CAS  Google Scholar 

  55. Mahore RP, Burghate DK, Kondawar SB (2014) Development of nanocomposites based on polypyrrole and carbon nanotubes for supercapacitors. Adv Mater Lett 5:400–405

    Article  Google Scholar 

  56. Chen F, Liu P, Zhao Q (2012) Well-defined graphene/polyaniline flake composites for high performance supercapacitors. Electrochim Acta 76:62–68

    Article  CAS  Google Scholar 

  57. Fan W, Zhang C, Tjiu WW, Pramoda KP, He C, Liu T (2013) Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl Mater Interfaces 5:3382–3391

    Article  CAS  Google Scholar 

  58. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos EL, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196:4102–4108

    Article  Google Scholar 

  59. Ma B, Zhou X, Bao H, Li X, Wang G (2012) Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. J Power Sources 215:36–42

    Article  CAS  Google Scholar 

  60. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Article  CAS  Google Scholar 

  61. Zhang K, Zhang LL, Zhao X, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  62. Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158–1161

    Article  CAS  Google Scholar 

  63. Basnayaka PA, Ram MK, Stefanakos EK, Kumar A (2013) Supercapacitors based on graphene–polyaniline derivative nanocomposite electrode materials. Electrochim Acta 92:376–382

    Article  CAS  Google Scholar 

  64. Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) Graphene/polypyrrole nanocomposite as electrochemical supercapacitor electrode: electrochemical impedance studies graphene. 2:81–87

    Google Scholar 

  65. Bora C, Sharma J, Dolui S (2014) Polypyrrole/sulfonated graphene composite as electrode material for supercapacitor. J Phys Chem C 118:29688–29694

    Article  CAS  Google Scholar 

  66. Bose S, Kim NH, Kuila T, Lau K-T, Lee JH (2011) Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 22:295202

    Article  Google Scholar 

  67. Chen Z, Yu D, Xiong W, Liu P, Liu Y, Dai L (2014) Graphene-based nanowire supercapacitors. Langmuir 30:3567–3571

    Article  CAS  Google Scholar 

  68. Alvi F, Basnayaka PA, Ram MK, Gomez H, Stefanako E, Goswami Y et al (2011) Graphene-polythiophene nanocomposite as novel supercapacitor electrode material. J New Mater Electrochem Syst 15:89–95

    Google Scholar 

  69. Alvi F, Ram MK, Basnayaka P, Stefanakos E, Goswami Y, Hoff A et al (2011) Electrochemical supercapacitors based on graphene-conducting polythiophenes nanocomposite. ECS Trans 35:167–174

    Article  CAS  Google Scholar 

  70. Alvi F, Ram MK, Basnayaka PA, Stefanakos E, Goswami Y, Kumar A (2011) Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim Acta 56:9406–9412

    Article  CAS  Google Scholar 

  71. Cho S, Kim M, Jang J (2015) Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT: PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl Mater Interfaces 7:10213-10227

    Google Scholar 

  72. Yang W, Zhao Y, He X, Chen Y, Xu J, Li S et al (2015) Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance. Nanoscale Res Lett 10:1–7

    Article  Google Scholar 

  73. Shim J-J (2015) Ultrasmall SnO2 nanoparticle-intercalated graphene@ polyaniline composites as an active electrode material for supercapacitors in different electrolytes. Synth Met 207:110–115

    Article  Google Scholar 

  74. Liew SY, Thielemans W, Walsh DA (2014) Polyaniline-and poly (ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors. J Solid State Electrochem 18:3307–3315

    Article  CAS  Google Scholar 

  75. Raj CJ, Kim BC, Cho W-J, Lee W, Jung S-D, Kim YH et al (2015) Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS Appl Mater Interfaces 7:13405-13414

    Google Scholar 

  76. Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi J-Y et al (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612–17620

    Article  CAS  Google Scholar 

  77. Jiang L-L, Lu X, Xie C-M, Wan G-J, Zhang H-P, Youhong T (2015) Flexible, free-standing TiO2–graphene–polypyrrole composite films as electrodes for supercapacitors. J Phys Chem C 119:3903–3910

    Article  CAS  Google Scholar 

  78. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031

    Article  CAS  Google Scholar 

  79. Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H et al (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44:3639–3665

    Article  CAS  Google Scholar 

  80. Wang K, Zhao P, Zhou X, Wu H, Wei Z (2011) Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J Mater Chem 21:16373–16378

    Article  CAS  Google Scholar 

  81. Yuan L, Lu X-H, Xiao X, Zhai T, Dai J, Zhang F et al (2011) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661

    Article  Google Scholar 

  82. Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6:470–476

    Article  CAS  Google Scholar 

  83. Gómez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casañ-Pastor N et al (2003) Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem Commun 5:149–153

    Article  Google Scholar 

  84. Chee WK, Lim HN, Huang NM (2015) Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int J Energy Res 39:111–119

    Article  CAS  Google Scholar 

  85. Aphale A, Maisuria K, Mahapatra MK, Santiago A, Singh P, Patra P (2015) Hybrid electrodes by in-situ integration of graphene and carbon-nanotubes in polypyrrole for supercapacitors. Sci Rep 5:14445

    Article  CAS  Google Scholar 

  86. Meng Q, Wang K, Guo W, Fang J, Wei Z, She X (2014) Thread-like supercapacitors based on one-step spun nanocomposite yarns. Small 10:3187–3193

    Article  CAS  Google Scholar 

  87. de Souza VHR, Oliveira MM, Zarbin AJG (2014) Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid–liquid interfaces. J Power Sources 260:34–42

    Article  Google Scholar 

  88. Reddy BN, Deepa M, Joshi AG (2014) Highly conductive poly (3, 4-ethylenedioxypyrrole) and poly (3, 4-ethylenedioxythiophene) enwrapped Sb 2 S 3 nanorods for flexible supercapacitors. Phys Chem Chem Phys 16:2062–2071

    Article  CAS  Google Scholar 

  89. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications. Wiley, Hoboken

    Book  Google Scholar 

  90. Basnayakaa PA, Ramb MK, Stefanakosb EK, Kumara A (2015) Nanostructured hybrid graphene-conducting polymers for electrochemical supercapacitor electrodes. Handbook of Nanoelectrochemistry. 1–19

    Google Scholar 

  91. Buller S, Thele M, De Doncker R, Karden E (2005) Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications. IEEE Trans Ind Appl 41:742–747

    Article  CAS  Google Scholar 

  92. Wang J, Xu Y, Chen X, Sun X (2007) Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Compos Sci Technol 67:2981–2985

    Article  CAS  Google Scholar 

  93. De Levie R (1963) On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim Acta 8:751–780

    Article  Google Scholar 

  94. Fletcher S, Black VJ, Kirkpatrick I (2014) A universal equivalent circuit for carbon-based supercapacitors. J Solid State Electrochem 18:1377–1387

    Article  CAS  Google Scholar 

  95. Xu J, Wang K, Zu S-Z, Han B-H, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  96. Yan X, Chen J, Yang J, Xue Q, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide–polyaniline and graphene–polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529

    Article  CAS  Google Scholar 

  97. Kumar NA, Choi H-J, Shin YR, Chang DW, Dai L, Baek J-B (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6:1715–1723

    Article  CAS  Google Scholar 

  98. Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    Article  CAS  Google Scholar 

  99. Huang K-J, Wang L, Liu Y-J, Wang H-B, Liu Y-M, Wang L-L (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594

    Article  CAS  Google Scholar 

  100. Murugan AV, Quintin M, Delville M-H, Campet G, Viswanath AK, Gopinath CS et al (2006) Synthesis and characterization of organic–inorganic poly (3, 4-ethylenedioxythiophene)/MoS 2 nanocomposite via in situ oxidative polymerization. J Mater Res 21:112–118

    Article  CAS  Google Scholar 

  101. Wang J, Wu Z, Yin H, Li W, Jiang Y (2014) Poly (3, 4-ethylenedioxythiophene)/MoS2 nanocomposites with enhanced electrochemical capacitance performance. RSC Adv 4:56926–56932

    Article  CAS  Google Scholar 

  102. Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116:13013–13019

    Article  CAS  Google Scholar 

  103. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  104. Zhang LL, Zhao S, Tian XN, Zhao X (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26:17624–17628

    Article  CAS  Google Scholar 

  105. Shao M, Li Z, Zhang R, Ning F, Wei M, Evans DG et al (2015) Hierarchical conducting polymer@ clay core–shell arrays for flexible all solid state supercapacitor devices. Small 11:3530–3538

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Clean Energy Research Center at University of South Florida for their continued support for supercapacitor work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basnayaka, P.A., Ram, M.K. (2017). A Review of Supercapacitor Energy Storage Using Nanohybrid Conducting Polymers and Carbon Electrode Materials. In: Kumar, V., Kalia, S., Swart, H. (eds) Conducting Polymer Hybrids. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-46458-9_6

Download citation

Publish with us

Policies and ethics