Skip to main content
Log in

Sorption Properties of the Manganese(IV) Oxide/Mechanically Activated Graphite Composite with Respect to As(III) Compounds

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The sorption properties of the MnO2/mechanically activated graphite composite with respect to As(III) compounds were studied. The static sorption capacity relative to As(III) compounds of the MnO2/mechanically activated graphite composite was 22.7 mg g–1, which exceeds the sorption properties of MnO2. The effect of solution pH in the range of 1–5, sorbent dose, and sorption time on the recovery of As(III) compounds was studied. It is shown that the process of As(III) sorption on the composite is described by the Freundlich model. The MnO2/mechanically activated graphite composite can be recommended for the removal of As(III) compounds from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bagherifam, S., Brown, T.C., Fellows, C.M., and Naidu, R., Pedosphere, 2019, vol. 29, no. 6, pp. 681–720. https://doi.org/10.1016/S1002-0160(19)60843-X

    Article  CAS  Google Scholar 

  2. Husnain, S.M., Asim, U., Yaqub, A., Shahzad, F., and Abbas, N., New J. Chem., 2020, no. 44, pp. 6096–6120. https://doi.org/10.1039/C9NJ06392G

    Article  Google Scholar 

  3. Islam Md.A., Mortona, D.W., Johnson, B.B., Mainali, B., Angove, M.J., J. Water Process. Eng., 2018, vol. 26, pp. 264–280. https://doi.org/10.1016/j.jwpe.2018.10.018

    Article  Google Scholar 

  4. Mopoung, S., Amornsakchai, P., Mopoung, R., and Thianngam, P., Chem. Asian J., 2019, vol. 12, no. 1, pp. 126–136. https://doi.org/10.3923/ajsr.2019.126.136

    Article  Google Scholar 

  5. Ji, C., Ren, H., Yang, S., RSC Adv., 2015, vol. 5, pp. 21978–21987. https://doi.org/10.1039/C5RA01455G

    Article  CAS  Google Scholar 

  6. Pechishcheva, N.V., Estemirova, S.Kh., Kozhina, G.A., Shunyaev, K.Yu., and Skryl’nik, M.Yu., Butlerovskie Soobshch., 2015, vol. 44, no. 11, pp. 49–54.

    Google Scholar 

  7. Della, P.L., Komárek, M., Bordas, F., and Bollinger, J.-C., J. Colloid Interface Sci., 2013, vol. 399, pp. 99–106. https://doi.org/10.1016/j.jcis.2013.02.029

    Article  CAS  Google Scholar 

  8. Bagherifam, S., Brown, T.C., Fellows, C.M., Naidu, R., and Komarneni, S., Appl. Clay Sci., 2021, vol. 203, ID 106004. https://doi.org/10.1016/j.clay.2021.106004

    Article  CAS  Google Scholar 

  9. McKenzie, R.M., Mineral. Mag., 1971, vol. 38, pp. 493–502. https://doi.org/10.1180/minmag.1971.038.296.12

    Article  CAS  Google Scholar 

  10. Nesbitt, H.W., Canning, G.W., and Bancroft, G.M., Geochim. Cosmochim. Acta, 1998, vol. 62, no. 12, pp. 2097–2110. https://doi.org/10.1016/S0016-7037(98)00146-X

    Article  CAS  Google Scholar 

  11. Moore, J.N., Walker, J.R., and Hayes, T.H., Clays Clay Miner., 1990, vol. 38, no. 5, pp. 549–555. https://doi.org/10.1346/CCMN.1990.0380512

    Article  CAS  Google Scholar 

  12. Ayawei, N., Ebelegi, A.N., and Wankasi D., J. Chem., 2017, ID 3039817. https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  13. Luo, J., Meng, X., Crittenden, J., Hu J. Qu,, C., Liu, H., and Peng, P., Chem. Eng. J., 2018, vol. 331, pp. 492–500. https://doi.org/10.1016/j.cej.2017.08.123

    Article  CAS  Google Scholar 

  14. Ge, X., Liu, J., Song, X., Wang, G., Zhang, H., Zhang, Y., and Zhao, H., Chem. Eng. J., 2016, vol. 301, pp. 139–148. https://doi.org/10.1016/j.cej.2016.05.005

    Article  CAS  Google Scholar 

  15. Ergül, B., Bektaş, N., and Öncel, M.S., Energy Environ. Sci., 2014, vol. 2, no. 5, pp. 103–112. https://doi.org/10.13189/eee.2014.020501

    Article  CAS  Google Scholar 

  16. Dalvi, A.A., Ajith, N., Swain, K.K., and Verma, R., J. Environ. Sci. Health A, 2015, vol. 50, no. 8, pp. 866–873. https://doi.org/10.1080/10934529.2015.1019808

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Ph.D. Ural Federal University M.A. Mashkovtsev for measurements of the specific surface area of ​​the samples.

Funding

The work was carried out according to the state order of the IMET Ural Branch of the Russian Academy of Sciences (no. 122013100200-2) using the equipment of the Central Collective Use Center “Ural-M.”

Author information

Authors and Affiliations

Authors

Contributions

A.A. Belozerova: study of sorption properties, processing of the results of sorption studies, review of literature; N.V. Pechishcheva: development of a method for the synthesis of a sorbent, synthesis of a sorbent; S.Kh. Estemirova: X-ray phase analysis; E.V. Sterkhov: conducting microscopic studies and electron probe X-ray spectral analysis; K.Yu. Shunyaev: formulation of research problems.

Corresponding author

Correspondence to A. A. Belozerova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 501–508, March, 2022 https://doi.org/10.31857/S0044461822040119

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belozerova, A.A., Pechishcheva, N.V., Estemirova, S.K. et al. Sorption Properties of the Manganese(IV) Oxide/Mechanically Activated Graphite Composite with Respect to As(III) Compounds. Russ J Appl Chem 95, 561–567 (2022). https://doi.org/10.1134/S1070427222040127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222040127

Keywords:

Navigation