Skip to main content
Log in

Calcium Carbonate Polymorphs in Overbased Oil Additives and Greases

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Calcium carbonate is widely distributed in nature, mainly in the form of calcite in sedimentary rocks of biogenic origin. Fine-grained calcite is widely used in various industries, but its amorphous modification (ACC) is often required. The review considers the structure and properties of the main calcium carbonate crystalline polymorphs, methods for determining their structure, and methods for stabilizing ACC. In lubricants, calcium carbonate is used in the form of overbased detergent-dispersant additives, where it is stabilized in the form of ACC, or in calcium-sulfonate complex greases. In greases, calcium carbonate is stabilized in the form of crystalline polymorphs of calcite or vaterite, which ensures the thixotropic properties of the lubricant. The conditions for mutual transitions of calcium carbonate polymorphs depending on the methods of preparation, conditions for stabilizing calcium carbonate particles, as well as the effect of the structure of calcium carbonate in additives and greases on tribological properties are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Cartwright, J.H.E., Checa, A.G., Gale, J.D., Gebauer, D., and Sainz-Diaz, C.I., Angew. Chem. Int. Ed., 2012, vol. 51, no. 48, pp. 11960–11970. https://doi.org/10.1002/anie.201203125

    Article  CAS  Google Scholar 

  2. Zou, Z., Bertinetti, L., Habraken, W.J.E.M., and Fratzi, P., CrystEngComm., 2018, vol. 20, no. 21, pp. 2902–2906. https://doi.org/10.1039/c8ce00171e

    Article  CAS  Google Scholar 

  3. Zou, Z., Habraken, W.J.E.M., Matveeva, G., Jensen, A.C.S., Bertinetti, L., Hood, M.A., Sun, C., Gilbert, P.U.P.A., Polishchuk, I., Pokroy, B., Mahamid, J., Politi, Y., Weiner, S., Werner, P., Bette, S., Dinnebier, R., Kolb, S., Zolotoyabko, E., and Fratzl, P., Science, 2019, vol. 363, no. 6425, pp. 396–400. https://doi.org/10.1126/science.aav.0210

    Article  CAS  PubMed  Google Scholar 

  4. Dhami, N.K., Reddy, M.S., and Mukherjee, A., Front. Microbiol., 2013, vol. 4, ID 314. https://doi.org/10.3389/fmicb.2013.00314

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dizaj, S.M., Barzegar-Jalali, M., Zarrintan, M.H., Adibkia, K., and Lotfipour, F., Exp. Opin. Drug Del., 2015, vol. 12, no. 10, pp. 1–12. https://doi.org/10.1517/17425247.2015.1049530

    Article  CAS  Google Scholar 

  6. Addadi, L., Raz, S., and Weiner, S., Adv. Mater., 2003, vol. 15, no. 12, pp. 959–970. https://doi.org/10.1002/adma.200300381

    Article  CAS  Google Scholar 

  7. Rez, P., Sinha, S., and Gal, A., J. Appl. Cryst., 2014, vol. 47, no. 5, pp. 1651–1657. https://doi.org/10.1107/S1600576714018202

    Article  CAS  Google Scholar 

  8. Du, H., Courrégelongue, C., Xto, J., Böhlen, A., Steinacher, M., Borca, C.N., Huthwelker, T., and Amstad, E., Chem. Mater., 2020, vol. 32, no. 10, pp. 4282–4291. https://doi.org/10.1021/acs.chemmater.0c00975

    Article  CAS  Google Scholar 

  9. Zou, Z., Habraken, W.J.E.M., Bertinetti, L., Politi, Y., Gal, A., Weiner, S., Addadi, L., and Fratzl, P., Adv. Mater. Interfaces, 2017, vol. 4, no. 1, pp. 1600076. https://doi.org/10.1002/admi.201600076

    Article  CAS  Google Scholar 

  10. Albright, J.N., Amer. Mineralogist., 1971, vol. 56, no. 3–4, pp. 620–624.

    CAS  Google Scholar 

  11. Galsworthy, J., Hammond, S., and Hone, D., Curr. Opin. Colloid Interface Sci., 2000, vol. 5, no. 5–6, pp. 274–279. https://doi.org/10.1016/S1359-0294(00)00066-2

    Article  CAS  Google Scholar 

  12. Duan, Y., Rausa, R., Zhao, Q., and Papadopoulos, K.D., Tribol. Lett., 2016, vol. 64, p. 8. https://doi.org/10.1007/s11249-016-0742-3

    Article  CAS  Google Scholar 

  13. Mansot, J.L., Hallouis, M., and Martin, J.M., Coll. Surf. A: Physicochem. Eng. Asp., 1993, vol. 71, no. 2, pp. 123–134. https://doi.org/10.1016/0927-7757(93)80336-D

    Article  CAS  Google Scholar 

  14. Kontoyannis, C.G. and Vagenas, N.V., Analyst, 2000, vol. 125, no. 2, pp. 251–255. https://doi.org/10.1039/a908609i

    Article  CAS  Google Scholar 

  15. Ni, M. and Ratner, B.D., Surf. Interface Anal., 2008, vol. 40, no. 10, pp. 1356–1361. https://doi.org/10.1002/sia.2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faatz, M., Gröhn, F., and Wegner, G., Adv. Mater., 2004, vol. 16, no. 2, pp. 996–1000. https://doi.org/10.1002/adma.200306565

    Article  CAS  Google Scholar 

  17. Vagenas, N.V., Gatsouli, A., and Kontoyannis, C.G., Talanta, 2003, vol. 59, no. 4, pp. 831–836. https://doi.org/10.1016/S0039-914(02)00638-0

    Article  CAS  PubMed  Google Scholar 

  18. Toffolo, M.B., Regev, L., Dubernet, S., Lefrais, Y., and Boaretto, E., Minerals, 2019, vol. 9, no. 2, pp. 121. https://doi.org/10.3390/min9020121

    Article  CAS  Google Scholar 

  19. Xyla, A.G. and Koutsoukos, P.G., J. Chem. Soc. Faraday Trans. 1, 1989, vol. 85, no. 10, pp. 3165–3172. https://doi.org/10.1039/F19898503165

    Article  CAS  Google Scholar 

  20. Bonacini, I., Prati, S., Mazzeo, R., and Falini, G., Cryst. Growth Des., 2014, vol. 14, no. 11, pp. 5922–5928.55 https://doi.org/10.1021/cg501133n

    Article  CAS  Google Scholar 

  21. Poduska, K.M., Regev, L., Boaretto, E., Addadi, L., Weiner, S., Kronik, L., and Curtarolo, S., Adv. Mater., 2011, vol. 23, no. 4, pp. 550–554. https://doi.org/10.1002/adma.201003890

    Article  CAS  PubMed  Google Scholar 

  22. Sato, M. and Matsuda, S., Z. Kryst., 1969, V. 129, no. 5–6, pp. 405–410. https://doi.org/10.1524/zkri.1969.129.5-6.405

    Article  Google Scholar 

  23. Nebel, H., Neuman, M., Mayer, C., and Epple, M., Inorg. Chem., 2008, vol. 47, no. 17, pp. 7874–7879. https://doi.org/10.1021/ic8007409

    Article  CAS  PubMed  Google Scholar 

  24. Pileni, M.P., Structure and Reactivity in Reverse Micelles, Amsterdam: Elsevier, 1989, pp. 13–43.

    Google Scholar 

  25. Tricaud, C., Hipeaux, J.C., and Lemerle, J., Lubr. Sci., 1989, vol. 1, no. 3, pp. 207–218. https://doi.org/10.1002/ls.3010010302

    Article  CAS  Google Scholar 

  26. Delfort, B., Daoudal, B., and Barré, L., Tribol. Trans., 1999, vol. 42, no. 2, pp. 296–302. https://doi.org/10.1080/10402009908982220

    Article  CAS  Google Scholar 

  27. Giasson, S., Espinat, D., and Palermo, T., Lubr. Sci., 1993, vol. 5, no. 2, pp. 91–111. https://doi.org/10.1002/ls.3010050203

    Article  Google Scholar 

  28. Bodnarchuk, M.S., Dini, D., Heyes, D.M., Breakspear, A., and Chahine, S., Langmuir, 2017, vol. 33, no. 29, pp. 7263–7270. https://doi.org/10.1021/acs.langmuir.7b00827

    Article  CAS  PubMed  Google Scholar 

  29. Cizaire, L., Martin, J.M., Le Mogne Th., and Gresser, E., Coll. Interfaces A: Physicochem. Eng. Asp., 2004, vol. 238, no. 1–3, pp. 151–158. https://doi.org/10.1016/j.colsurfa.2004.02.015

    Article  CAS  Google Scholar 

  30. Montanari, L. and Frigerio, F., J. Colloid Interface Sci., 2010, vol. 348, no. 2, pp. 452–459. https://doi.org/10.1016/j.jcis.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  31. Bearchell, C.A., Danks, T.N., Heyes, D.M., Moreton, D.J., and Taylor, S.E., Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 5197–5207. https://doi.org/10.1039/b004361n

    Article  CAS  Google Scholar 

  32. Bearchell, C.A., Heyes, D.M., Moreton, D.J., and Taylor, S.E., Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 4774–4783. https://doi.org/10.1039/B103628A

    Article  CAS  Google Scholar 

  33. Bodnarchuk, M.S., Dini, D., Heyes, D.M., Chahine, S., and Edwards, S., J. Phys. Chem., 2014, vol. 118, no. 36, pp. 21092–21103. https://doi.org/10.1021/jp502777m

    Article  CAS  Google Scholar 

  34. Pu, Y., Kang, F., Zeng X.-F., Chen J.-F., and Wang, J.-X., AIChE, J., 2017, vol. 63, no. 9, pp. 3663–3669. https://doi.org/10.1002/aic.15729

    Article  CAS  Google Scholar 

  35. Pat. US 6,107,259 (publ. 2000).

  36. Costello, M.T., Tribotest., 2005, vol. 11 N 3, pp. 207–212. https://doi.org/10.1002/tt.3020110304

    Article  CAS  Google Scholar 

  37. Roman, J.-P., Hoornaert, P., Faure, D., Biver, C., Jacquet, F., and Martin, J.-M., J. Colloid Interface Sci., 1991, vol. 144, no. 2, pp. 324–339. https://doi.org/10.1016/0021-9797(91)90398-R

    Article  CAS  Google Scholar 

  38. Chen, Z., Chen, F., and Chen, D., Ind. End. Chem. Res., 2013, vol. 52, no. 36, pp. 12748–12762. https://doi.org/10.1021/ie401415s

    Article  CAS  Google Scholar 

  39. Kutuzova, L.P., Zerzeva, I.M., Kravchuk, G.G., and Sushko, N.N., Khim. tekhnologiya topliv i masel, 2013, no. 5, pp. 26–39.

    Google Scholar 

  40. Pat. US 6,239,083 B1. (publ. 2001).

  41. Mackwood, W. and Muir, R., NLGI Spokesman, 1999, vol. 63, no. 5, pp. 23–37.

    Google Scholar 

  42. Zhornik, V.I., Ivakhin, A.V., Dudan, A.V., and Gushcha, A.A., Vestn. Polotskogo Gos. Univ. Ser. V, 2015, no. 11, pp. 63–68.

    Google Scholar 

  43. Kobylyanskii, E.V., Kravchuk, G.G., Makedonskii, O.A., and Ishchuk, Yu.L., Khim. tekhnoliya topliv i masel, 2002, no. 2, pp. 34–37.

    Google Scholar 

  44. Kobylyanskii, E.V., Voloshinets, V.A., and Kobylyanskii, A.E., Khim. tekhnologiya topliv i masel, 2014, no. 2, pp. 29–32.

    Google Scholar 

  45. Kobylyansky, E., Mishchuk, O., and Ishchuk, Y., Chem. & Chem. Technol., 2011, vol. 5, no. 2, pp. 231–239. https://doi.org/10.23939/chcht05.02.231

    Article  Google Scholar 

  46. Liu, D., Zhang, M., Zhao, G., and Wang, X., Tribol. Lett., 2012, vol. 45, pp. 265–273. https://doi.org/10.1007/s11249-011-9884-5

    Article  CAS  Google Scholar 

  47. Liu, D., Zhao, G., and Wang, X., Tribol. Lett., 2012, vol. 47, pp. 183–194. https://doi.org/10.1007/s11249-012-9976-x

    Article  CAS  Google Scholar 

  48. Costa, S.N., Freire, C.N., Caetano, E.W.S., Maia, F.F., Barboza, C.A., Fulco, U.L., and Albuquerque, E.L., J. Phys. Chem. A, 2016, vol. 120, no. 28, pp. 5752–5765. https://doi.org/10.1021/acs.jpca.6b05436

    Article  CAS  PubMed  Google Scholar 

  49. Du, H., Courrégelongue, C., Xto, J., Böhlen, A., Steinacher, M., Borca, C.N., Huthwelker, T., and Amstad, E., Chem. Mater., 2020, vol. 32, no. 10, pp. 4282–4291. https://doi.org/10.1021/acs.chemmater.0c00975

    Article  CAS  Google Scholar 

  50. Albéric, M., Bertinetti, L., Zou, Z., Fratzl, P., Habraken, W., and Politi, Y., Adv. Sci., 2018, vol. 5, no. 5, pp. 1701000. https://doi.org/10.1002/advs.201701000

    Article  CAS  Google Scholar 

  51. Du, H. and Amstad, E., Angew. Chemie Int. Ed., 2020, vol. 59, no. 5, pp. 1798–1816. https://doi.org/10.1002/anie.201903662

    Article  CAS  Google Scholar 

  52. Euw, S.V., Azais, Th., Manichev, V., Laurent, G., Pehau-Arnaudet, G., Rivers, M., Murali, N., Kelly, D.J., and Falkowski, P.G., J. Am. Chem. Soc., 2020, vol. 142, no. 29, pp. 12811–12825. https://doi.org/10.1021/jacs.0c5591

    Article  Google Scholar 

  53. Oral, Ç.M. and Ercan, B., Powder Techn., 2018, vol. 339, pp. 781–788. https://doi.org/10.1016/j.powtec.2018.08.066

    Article  CAS  Google Scholar 

  54. Du, H., Steinacher, M., Borca, C., Huthwelker, T., Murello, A., Stellacci, F., and Amstad, E., J. Am. Chem. Soc., 2018, vol. 140, no. 43, pp. 14289–14299. https://doi.org/10.1021/jacs.8b08298

    Article  CAS  PubMed  Google Scholar 

  55. Liu, Z., Zhang, Z., Wang, Z., Jin, B., Li, D., Tao, J., Tang, R., and De Yoreo, J.J., Proc. Nat. Acad. Sci., 2020, vol. 117, no. 7, pp. 3397–3404. https://doi.org/10.1073/pnas.1914813117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, Y., Xu, H., and Wu, G., ChemistrySelect., 2020, vol. 5, no. 31, pp. 9709–9713. https://doi.org/10.1002/slct.202002613.

    Article  CAS  Google Scholar 

  57. Qiao, L., Zizak, I., and Zaslansky, P., Ma, Y., Crystals, 2020, vol. 10, pp. 750. https://doi.org/10.3390/cryst10090750

    Article  CAS  Google Scholar 

  58. Raiteri, P. and Gale, J.D., J. Am. Chem. Soc., 2010, vol. 132, no. 49, pp. 17623–17634. https://doi.org/10.1021/ja108508k

    Article  CAS  PubMed  Google Scholar 

  59. Sun, R., Tai, C.-W., Strǿmme, M., and Cheung, O., Micropor. Mesopor. Mater., 2020, vol. 292, pp. 109736. https://doi.org/10.1016/j.micromeso.2019.109736

    Article  CAS  Google Scholar 

  60. Zeng, Y., Cao, J., Wang, Z., Guo, J., and Lu, J., Cryst. Growth Des., 2018, vol. 18, no. 3, pp. 1710–1721. https://doi.org/10.1021/acs.cgd.7b01634

    Article  CAS  Google Scholar 

  61. Khouzani, M.F., Chevrier, D.M., Guttlein, P., Hauser, K., Zhang, P., Heldin, N., and Gebauer, D., CrystEngComm., 2015, vol. 17, no. 26, pp. 4842–4849. https://doi.org/10.1039/c5ce00720h

    Article  Google Scholar 

  62. Stephens, C.J., Ladden, S.F., Meldrum, F.C., and Christenson, K.H., Adv. Func. Mater., 2010, vol. 20, no. 13, pp. 2108–2115. https://doi.org/10.1002/adfm.201000248

    Article  CAS  Google Scholar 

  63. Leukel, S., Panthöfer, M., Mondeshki, M., Kieslich, G., Wu, Y., Krautwurst, N., and Tremel, W., J. Am. Chem. Soc., 2018, vol. 140, no. 44, pp. 14638–14646. https://doi.org/10.1021/jacs.8b06703

    Article  CAS  PubMed  Google Scholar 

  64. Bertheville, B., Deroide, B., and Zanchetta, J.V., Lubr. Sci., 1994, vol. 6, no. 3, pp. 229–245. https://doi.org/10.1002/ls.3010060303

    Article  Google Scholar 

  65. Kang, S.H., Hirasawa, I., Kim, W.-S., and Choi, C.K., Coll. Interface Sci., 2005, vol. 288, no. 2, pp. 496–502. https://doi.org/10.1016/j.jcis.2005.03.015

    Article  CAS  Google Scholar 

  66. Noel, E.H., Kim, Y.-Y., Charnock, J.M., and Meldrum, F.C., CrystEngComm., 2013, vol. 15, no. 4, pp. 697–705. https://doi.org/10.1039/c2ce26529j

    Article  CAS  Google Scholar 

  67. Xto, J.M., Borca, C.N., van Bokhoven, J.A., and Huthwelker, T., Chem. Commun., 2019, vol. 55, no. 72, pp. 10725–10728. https://doi.org/10.1039/c9cc03749g

    Article  CAS  Google Scholar 

  68. Nan, Z., Chen, X., Yang, Q., Wang, X., Shi, Z., and Hou, W., J. Colloid Interface Sci., 2008, vol. 325, no. 2, pp. 331–336. https://doi.org/10.1016/j.jcis.2008.05.045

    Article  CAS  PubMed  Google Scholar 

  69. Aikin, A.A., Tribol. Lubr. Technol., 2020, vol. 76, no. 6, pp. 44–46.

    Google Scholar 

  70. McGuire, N., Tribol. Lubr. Technol., 2020, vol. 76, no. 2, pp. 32–39.

    Google Scholar 

  71. Fan, X., Li, W., Zhu, M., Xia, Y., and Wang, J., Tribol. Int., 2017, vol. 118, pp. 128–139. https://doi.org/10.1016/j.triboint.2017.09.025

    Article  CAS  Google Scholar 

  72. Fish, G., Calcium sulfonate greases. Performance and applications overview. White Paper Lubrisense. 2014, no. 16.

  73. Patent US 4 560 489 (publ. 1985).

  74. Muir, R.J., NLGI Spokesman, 1988, vol. 52, no. 4, pp. 140–146.

    CAS  Google Scholar 

  75. Denis, R. and Sivik, M., NLGI Spokesman, 2009, vol. 73, no. 5, pp. 30–37.

    CAS  Google Scholar 

  76. Kimura, Y., Takemura, K., Araki, J., and Kojima, H., NLGI Spokesman, 2006, vol. 70, no. 9, pp. 20–26.

    CAS  Google Scholar 

  77. Hunt, M.W., Lubr. Eng., 1975, vol. 31, no. 4, pp. 183–186.

    Google Scholar 

  78. Gow, G., Thickeners in the Grease Matrix Market and Product Trends. Axel Christiensson White Paper Series. LubrisensTM 2, 2005.

  79. Komatsuzaki, S., Jpn J. Tribol., 2002, vol. 47, no. 1, pp. 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Bakunin.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 410–421, March, 2022 https://doi.org/10.31857/S0044461822040016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakunin, V.N., Aleksanyan, D.R. & Bakunina, Y.N. Calcium Carbonate Polymorphs in Overbased Oil Additives and Greases. Russ J Appl Chem 95, 461–471 (2022). https://doi.org/10.1134/S1070427222040012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222040012

Keywords:

Navigation