Skip to main content
Log in

Development of Yttrium and Iron Oxide Thin Films via AACVD Method for Photooxidation of Water

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Owing to high stability, metal oxide-based ceramic thin films are of great interest for photocatalytic oxidation of water. Therefore, the current research is focused on the fabrication of different transition metal oxide thin films to estimate their photocatalytic efficiency. In the present research thin films of oxides of iron and yttrium are prepared on FTO glass substrate via Aerosol Assisted Chemical Vapor Deposition (AACVD) from methanol solution of iron and yttrium acetate precursors. The deposition of targeted films Fe2O3 and Y2O3 were carried out at 420 and 450 °C respectively under the argon gas flow of 120 cm3/min. Thin films were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), to determine their phase and morphology. The direct energy band gaps were determined via Tauc’s plot that gave values of 2.05 eV and 3.3 eV for oxides of iron and yttrium respectively. The photoelectrochemical water splitting response of the as-fabricated transition metal oxide as working electrodes were measured using linear scan voltammetry. The maximum value of photocurrent density recorded under the illumination with xenon lamp at 1.2 V vs. RHE was equal to 2.5 mA/cm2 and 0.3 mA/cm2 for Fe2O3 and Y2O3 thin films, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Suga, M., Akita, F., Hirata, K., et al., Nature, 2015, vol. 517, no. 7532, pp. 99–103.

    Article  CAS  PubMed  Google Scholar 

  2. Tsui, E.Y., Kanady, J.S. and Agapie, T., Chem., 2013, vol. 52, no. 24, pp. 13833–13848.

    CAS  Google Scholar 

  3. Ismail, A.A. and Bahnemann, D.W., Sol. Energy Mater. Sol. Cells, 2014, vol. 128, pp. 85–101.

    Article  CAS  Google Scholar 

  4. Maeda, K. and Domen, K., J. Phys. Chem. Lett., 2010, vol. 1, no. 18, pp. 2655–2661.

    Article  CAS  Google Scholar 

  5. Noel, N.K., Stranks, S.D., Abate, A., et al., Energy Environ. Sci., 2014, vol. 7, no. 9, pp. 3061–3068.

    Article  CAS  Google Scholar 

  6. Ren, X., Zi, W., Ma, Q., et al., Sol. Energy Mater. Sol. Cells, 2015, vol. 134, pp. 54–59.

    Article  CAS  Google Scholar 

  7. Green, M.A., Ho-Baillie, A. and Snaith, H.J., Nat. Photonics, 2014, vol. 8, no. 7, pp. 506–514.

    Article  CAS  Google Scholar 

  8. Mansoor, M.A., Ismail, A., Yahya, R., et al., Inorg. Chem., 2013, vol. 52, no. 10, pp. 5624–5626.

    Article  CAS  PubMed  Google Scholar 

  9. Zohuri, B. and McDaniel, P., Springer International Publishing, 2019, pp. 23–67.

  10. Güney, T., Int. J. Sustain. Dev. World Ecol., 2019, vol. 26, 5, pp. 389–397.

    Article  Google Scholar 

  11. Panwar, N.L., Kaushik, S.C. and Kothari, S., Renew. Sustain. Energy Rev., 2011, vol. 15, 3, pp. 1513–1524.

    Article  Google Scholar 

  12. Hosseini, S.E. and Wahid, M.A., Renew. Sustain. Energy Rev., 2016, vol. 57, pp. 850–866.

    Article  CAS  Google Scholar 

  13. Mansoor, M.A., Munawar, K., Lim, S.P., et al., New J. Chem., 2017, vol. 41, no. 15, pp. 7322–7330.

    Article  CAS  Google Scholar 

  14. Fujishima, A. and Honda, K., Nature, 1972, vol. 238, no. 5358, pp. 37–38.

    Article  CAS  PubMed  Google Scholar 

  15. Dong, Z., Ding, D., Li, T. and Ning, C., Appl. Surf. Sci., 2019, vol. 480, pp. 219–228.

    Article  CAS  Google Scholar 

  16. Kusior, A., Wnuk, A., Trenczek-Zajac, A., Zakrzewska, K. and Radecka, M., Int. J. Hydrogen Energy, 2015, vol. 40, no. 14, pp. 4936–4944.

    Article  CAS  Google Scholar 

  17. Tan, C. and Zhi, Q., The Energy-Water Nexus, 2016, vol. 88, pp. 277–284.

    Google Scholar 

  18. Jian, J., Jiang, G., van de Krol, R., Wei, B. and Wang, H., Nano Energy, 2018, vol. 51, pp. 457–480.

    Article  CAS  Google Scholar 

  19. Mansoor, M.A., Huang, N.M., McKee, V., et al., Sol. Energy Mater. Sol. Cells, 2015, vol. 137, pp. 258–264.

    Article  CAS  Google Scholar 

  20. Mansoor, M.A., Mazhar, M., Ebadi, M., Ming, H.N., Mat Teridi, M.A. and Kong Mun, L., New J. Chem., 2016, vol. 40, no. 6, pp. 5177–5184.

    Article  CAS  Google Scholar 

  21. Chen, Z., Duan, X., Wei, W., Wang, S. and Ni, B.-J., J. Mater. Chem. A, 2019, vol. 7, no. 25, pp. 14971–15005.

    Article  CAS  Google Scholar 

  22. Yu, F., Zhou, H., Zhu, Z., et al., ACS Catal., 2017, vol. 7, no. 3, pp. 2052–2057.

    Article  CAS  Google Scholar 

  23. Wang, W., Dong, J., Ye, X., Li, Y., Ma, Y. and Qi, L., Small, 2016, vol. 12, no. 11, pp. 1469–1478.

    Article  CAS  PubMed  Google Scholar 

  24. Khan, I., Ali, S., Mansha, M. and Qurashi, A., Ultrason. Sonochem., 2017, vol. 36, pp. 386–392.

    Article  CAS  PubMed  Google Scholar 

  25. Pankratov, D.A., Veligzhanin, A.A. and Zubavichus, Y. V., Russ. J. Inorg. Chem., 2013, vol. 58, no. 1, pp. 67–73.

    Article  CAS  Google Scholar 

  26. D’yachkov, E.P. and D’yachkov, P.N., Russ. J. Inorg. Chem., 2019, vol. 64, no. 9, pp. 1152–1155.

    Article  Google Scholar 

  27. D’yachkov, E.P. and D’yachkov, P.N., Russ. J. Inorg. Chem., 2018, vol. 63, no. 9, pp. 1204–1210.

    Article  Google Scholar 

  28. Hardwick, D.A., Thin Solid Films, 1987, vol. 154, no. 1–2, pp. 109–124.

    Article  CAS  Google Scholar 

  29. Wilson, N.C., Muscat, J., Mkhonto, D., Ngoepe, P.E. and Harrison, N.M., Phys. Rev. B, 2005, vol. 71, no. 7, p. 075202.

    Article  CAS  Google Scholar 

  30. Nozik, A.J., Phys. Rev. B, 1972, vol. 6, no. 2, pp. 453–459.

    Article  CAS  Google Scholar 

  31. Zhang, T., Shen, Y. and Zhang, R., Mater. Lett., 1995, vol. 23, no. 1–3, pp. 69–71.

    Article  Google Scholar 

  32. Mansoor, M.A., Ebadi, M., Mazhar, M., et al., Mater. Chem. Phys., 2017, vol. 186, pp. 286–294.

    Article  CAS  Google Scholar 

  33. Tahir, A.A., Ehsan, M.A., Mazhar, M., Wijayantha, K.G.U., Zeller, M. and Hunter, A.D., Chem. Mater., 2010, vol. 22, no. 17, pp. 5084–5092.

    Article  CAS  Google Scholar 

  34. Munawar, K., Mansoor, M.A., Olmstead, M.M., et al., Mater. Chem. Phys., 2020, vol. 255, p. 123220.

    Article  CAS  Google Scholar 

  35. Zan, R. and Altuntepe, A., J. Mol. Struct., 2020, vol. 1199, p. 127026.

    Article  CAS  Google Scholar 

  36. Emin, S., de Respinis, M., Mavrič, T., Dam, B., Valant, M. and Smith, W.A., Appl. Catal. A Gen., 2016, vol. 523, pp. 130–138.

    Article  CAS  Google Scholar 

  37. Jia, L., Harbauer, K., Bogdanoff, P., et al., J. Mater. Chem. A, 2014, vol. 2, no. 47, pp. 20196–20202.

    Article  CAS  Google Scholar 

  38. Bosso, P., Milella, A., Barucca, G., et al., Plasma Process. Polym., 2021, vol. 18, no. 1, p. 2000121.

    Article  CAS  Google Scholar 

  39. Wickman, B., Bastos Fanta, A., Burrows, A., Hellman, A., Wagner, J.B. and Iandolo, B., Sci. Rep., 2017, vol. 7, no. 1, p. 40500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kay, A., Cesar, I. and Grätzel, M., J. Am. Chem. Soc., 2006, vol. 128, no. 49, pp. 15714–15721.

    Article  CAS  PubMed  Google Scholar 

  41. Kyesmen, P.I., Nombona, N. and Diale, M., Mater. Res. Bull., 2020, vol. 131, p. 110964.

    Article  CAS  Google Scholar 

  42. Gaboriaud, R.J., Pailloux, F., Guerin, P. and Paumier, F., J. Phys. D. Appl. Phys., 2000, vol. 33, no. 22, pp. 2884–2889.

    Article  CAS  Google Scholar 

  43. Reddy, I.N., Reddy, C.V., Cho, M., Kim, D. and Shim, J., J. Electroanal. Chem., 2019, vol. 848, p. 113335.

    Article  CAS  Google Scholar 

  44. Reddy, C.V., Reddy, I.N., Shim, J., Kim, D. and Yoo, K., Ceram. Int., 2018, vol. 44, no. 11, pp. 12329–12339.

    Article  CAS  Google Scholar 

  45. Käämbre, T., Vanags, M., Pärna, R., et al., Ceram. Int., 2018, vol. 44, no. 11, pp. 13218–13225.

    Article  CAS  Google Scholar 

  46. Larsen, P.K., Cuppens, R. and Spierings, G.A.C.M., Ferroelectrics, 1992, vol. 128, no. 1, pp. 265–292.

    Article  CAS  Google Scholar 

  47. ATR-FT-IR spectra of Iron(III) oxide (Fe2O3). http://lisa.chem.ut.ee/IR_spectra/paint/fillers/ironiii-oxide/

  48. Alarcón-Flores, G., Aguilar-Frutis, M., García-Hipolito, M., Guzmán-Mendoza, J., Canseco, M.A., and Falcony, C., J. Mater. Sci., 2008, vol. 43, no. 10, pp. 3582–3588.

    Article  CAS  Google Scholar 

  49. Lassoued, A., Dkhil, B., Gadri, A., and Ammar, S., Results Phys., 2017, vol. 7, pp. 3007–3015.

    Article  Google Scholar 

  50. Ivanic, R., Rehacek, V., Novotny, I., et al., Vacuum, 2001, vol. 61, no. 2–4, pp. 229–234.

    Article  CAS  Google Scholar 

  51. Makimizu, Y., Nguyen, N.T., Tucek, J., et al., Chem Euro J., 2019 Vol. 26, pp. 2685 –2692

    Google Scholar 

  52. Tokubuchi, T., Arbi, R.I., Zhenhua, P., Katayama, K., et al., J. Photochem. Photobiol. A: Chem., 2021, vol. 410, p. 11317.

    Article  CAS  Google Scholar 

  53. Li, X., Wang, Z., Zhang, Z., et al. Sci Rep, 2015, vol. 5, p. 9130.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tahir, A.A., Mat-Teridi, M.A., and Wijayantha, K.G.U., Rapid Res. Lett., 2014, vol. 8, no. 12, pp. 976–981.

    CAS  Google Scholar 

  55. Ahmed, S., Mansoor, M.A., Basirun,W.J., et al., New J. Chem., 2015, vol. 39, pp. 1031–1037.

    Article  CAS  Google Scholar 

  56. Ahmed, S., Mansoor, M.A., Mazhar, M., et al., Dalton Trans., 2014, vol. 43, pp. 8523–8529.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the School of Natural Sciences, National University of Sciences and Technology (NUST), and National Centre for Physics (NCP) for providing research facilities.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudassir Iqbal.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, R.b., Bakar, S.A., Mazhar, M. et al. Development of Yttrium and Iron Oxide Thin Films via AACVD Method for Photooxidation of Water. Russ J Appl Chem 95, 37–45 (2022). https://doi.org/10.1134/S1070427222010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222010050

Keywords:

Navigation