Skip to main content
Log in

Transition metal tungstates AWO4 (A2+  = Fe, Co, Ni, and Cu) thin films and their photoelectrochemical behavior as photoanode for photocatalytic applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper discusses about a facile transition metal tungstate thin films preparation method and their remarkable photoelectrochemical properties. The films of AWO4 (A2+ = Fe, Co, Ni, Cu) were deposited onto conductive fluorine-doped tin oxide (FTO) glass substrate. The results of X-ray diffraction analysis indicated the presence of crystalline films. Field emission scanning electron microscopy images revealed nanostructured materials. X-ray photoelectron studies were employed to analyze elemental and chemical composition. Optical behavior indicated indirect transitions for all AWO4 films. Photoelectrochemical studies displayed that AWO4 films were successfully used as photoanodes in a photoelectrochemical cell under polychromatic irradiation. From electrochemical measurement, it was possible to estimate the flat band potential and so prevising suitable application of photoelectrodes. This work reports for the first time a comparative and comprehensive photoelectrochemical study with AWO4 films prepared in a simple way. The results indicate that the films can be used as photoanodes in water splitting reactions and other photoelectrocatalytic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar P, Saroj DP (2014) Water-energy-pollution nex- us for growing cities. Urban Climate 10:846–853. https://doi.org/10.1016/j.uclim.2014.07.004

    Article  Google Scholar 

  2. Bajorowicz B, Kobylański MP, Malankowska A, Mazierski P, Nadolna J, Pieczyńska A, Zaleska-Medynska A (2018) Application of metal oxide-based photocatalysis. In: Zalenska-Medynska A (ed) Metal Oxide-Based Photocatalysis; Fundamentals and Prospects for Application; Metal Oxides, vol series, 1st edn. Elsevier, Amsterdam, pp 211–340

    Google Scholar 

  3. van de Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18:2311–2320. https://doi.org/10.1039/B718969A

    Article  Google Scholar 

  4. Kalanur S, Hwang J-Y, Seo H (2017) Facile fabrication of bitter-gourd-shaped copper (II) tungstate thin films for improved photocatalytic water splitting. J Catal 350:197–202. https://doi.org/10.1016/j.jcat.2017.04.008

    Article  CAS  Google Scholar 

  5. Garcia-Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C 31:1–35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005

    Article  CAS  Google Scholar 

  6. Shinde SS, Bhosale CH, Rajpure KY (2014) Kinetic analysis of heterogeneous photocatalysis: role of hydroxyl radicals. Catal Rev—Sci Eng 55:79–133. https://doi.org/10.1080/01614940.2012.734202

    Article  CAS  Google Scholar 

  7. Djurišić AB, Leung YH, Ching Ng AM (2014) Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater Horiz 1:400–410. https://doi.org/10.1039/C4MH00031E

    Article  Google Scholar 

  8. Peiris S, de Silva HB, Ranasinghe KN, Bandara SV, Perera IR (2021) Recent development and future prospects of TiO2 photocatalysis. J Chin Chem Soc 68:738–769. https://doi.org/10.1002/jccs.202000465

    Article  CAS  Google Scholar 

  9. Carvalho IC, Barbosa ML, Costa MJS, Longo E, Cavalcante LS, Viana VGF, Santos, & R.S. (2020) TiO2-based dye-sensitized solar cells prepared with bixin and norbixin natural dyes: effect of 2,2’-bipyridine additive on the current and voltage. Optik 218:165236–165245. https://doi.org/10.1016/j.ijleo.2020.165236

    Article  CAS  Google Scholar 

  10. Costa MJS, Costa GS, Lima AEB, da Luz Júnior GE, Longo E, Cavalcante LS, Santos RS (2018) Photocurrent response and progesterone degradation by employing WO3 films modified with platinum and silver nanoparticles. ChemPlusChem 83:1153–1161. https://doi.org/10.1002/cplu.201800534

    Article  CAS  Google Scholar 

  11. Costa GS, Costa MJS, Oliveira HG, Lima LCB, Luz GE Jr, Cavalcante LS, Santos RS (2020) Effect of the applied potential condition on the photocatalytic properties of Fe2O3|WO3 heterojunction films. J Inorg Organomet Polym Mater 30:2851–2862. https://doi.org/10.1007/s10904-019-01429-0

    Article  CAS  Google Scholar 

  12. Qadir AM, Erdogan IY (2019) Structural properties and enhanced photoelectrochemical performance of ZnO films decorated with Cu2O nanocubes. Int J Hydrogen Energy 44:18694–18702. https://doi.org/10.1016/j.ijhydene.2019.01.101

    Article  CAS  Google Scholar 

  13. Maruska HP, Ghosh AK (1979) A study of oxide-based heterostructure photoelectrodes. Solar Energ Mater 1:411–429. https://doi.org/10.1016/0165-1633(79)90008-X

    Article  CAS  Google Scholar 

  14. Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933. https://doi.org/10.1021/nl2000743

    Article  CAS  PubMed  Google Scholar 

  15. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300. https://doi.org/10.1021/cr00017a013

    Article  CAS  Google Scholar 

  16. Sivula K, Formal FL, Grätzel M (2009) WO3−Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 2:2862–2867. https://doi.org/10.1021/cm900565a

    Article  CAS  Google Scholar 

  17. Minggu LJ, Daud WRW, Kassim MB (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting. Int J Hydrogen Energy 35:5233–5244. https://doi.org/10.1016/j.ijhydene.2010.02.133

    Article  CAS  Google Scholar 

  18. Lima AEB, Reis RYN, Ribeiro LS, Ribeiro LK, Assis M, Santos RS, Fernandes CHM, Cavalcante LS, Longo E, Osajima JAO, Luz GE Jr (2021) Microwave-assisted hydrothermal synthesis of CuWO4-palygorskite nanocomposite for enhanced visible photocatalytic response. J Alloy Compd 863:158731–158742. https://doi.org/10.1016/j.jallcom.2021.158731

    Article  CAS  Google Scholar 

  19. Moura JPC, Reis RYN, Lima AEB, Santos RS, Luz GE Jr (2020) Improved photoelectrocatalytic properties of ZnO/CuWO4 heterojunction film for RhB degradation. Journal of Photochemistry and Photobiology A-Chemistry 401:112778–112783. https://doi.org/10.1016/j.jphotochem.2020.112778

    Article  CAS  Google Scholar 

  20. García-Pérez UM, Martinez-de la Cruz A, Peral J (2012) Transition metal tungstates synthesized by co-precipitation method: Basic photocatalytic properties. Electrochim Acta 81:227–232. https://doi.org/10.1016/j.electacta.2012.07.045

    Article  CAS  Google Scholar 

  21. Chen P, He H-Y (2014) H2 evolution from H2O/H2O2/MWO4 (M = Fe2+, Co2+, Ni2+) systems by photocatalytic reaction. Res Chem Intermed 40:1947–1956. https://doi.org/10.1007/s11164-013-1092-5

    Article  CAS  Google Scholar 

  22. Zawawi SMM, Yahya R, Hassan A, Mahmud HNME, Daud MN (2013) Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem Central J 7:1–10. https://doi.org/10.1186/1752-153X-7-80

    Article  CAS  Google Scholar 

  23. Ruiz-Fuertes J, Friedrich A, Pellicer-Porres J, Errandonea D, Segura A, Morgenroth W, Haussühl E, Tu C-Y, Polian A (2011) Structure solution of the high-pressure phase of CuWO4 and evolution of the Jahn-Teller distortion. Chem Mater 23:4220–4226. https://doi.org/10.1021/cm201592h

    Article  CAS  Google Scholar 

  24. Ke J, Younis MA, Kong Y, Zhou H, Liu J, Lei L, Hou Y (2018) Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: a review. Nano-Micro Letters 10:69. https://doi.org/10.1007/s40820-018-0222-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Errandonea D, Ruiz-Fuertes J (2018) A brief review of the effects of pressure on wolframite-type oxides. Crystals 8:71. https://doi.org/10.3390/cryst8020071

    Article  CAS  Google Scholar 

  26. Gao J, Gao Y, Sui Z, Dong Z (2018) Hydrothermal synthesis of BiOBr/FeWO4 composite photocatalysts and their photocatalytic degradation of doxycycline. J Alloy Compd 732:43–51. https://doi.org/10.1016/j.jallcom.2017.10.092

    Article  CAS  Google Scholar 

  27. Gao Q, Liu Z (2017) FeWO4 nanorods with excellent UV–visible light photocatalysis. Prog Nat Sci: Mater Int 27:556–560. https://doi.org/10.1016/j.pnsc.2017.08.016

    Article  CAS  Google Scholar 

  28. Mahendran N, Udayakumar S, Praveen K (2019) pH-Controlled photocatalytic abatement of RhB by an FeWO4/BiPO4 p–n heterojunction under visible light irradiation. New J Chem 43:17241–17250. https://doi.org/10.1039/C9NJ04263F

    Article  CAS  Google Scholar 

  29. Shanmugapriya S, Surendran S, Nithya VD, Saravanan P, Selvan RK (2016) Temperature dependent electrical and magnetic properties of CoWO4 nanoparticles synthesized by sonochemical method. Mater Sci Eng B 214:57–67. https://doi.org/10.1016/j.mseb.2016.09.002

    Article  CAS  Google Scholar 

  30. Pandey PK, Bhave NS, Kharat RB (2006) Structural, optical, electrical and photovoltaic electrochemical characterization of spray deposited NiWO4 thin films. Electrochim Acta 51:4659–4664. https://doi.org/10.1016/j.electacta.2005.12.042

    Article  CAS  Google Scholar 

  31. Song Z, Ma J, Sun H, Wang W, Sun Y, Sun L, Liu Z, Gao C (2009) Synthesis of NiWO4 nano-particles in low-temperature molten salt medium. Ceram Int 35:2675–2678. https://doi.org/10.1016/j.ceramint.2009.03.010

    Article  CAS  Google Scholar 

  32. AlShehri SM, Ahmed J, Alzahrani AM, Ahamad T (2017) Synthesis, characterization, and enhanced photocatalytic properties of NiWO4 nanobricks. New J Chem 41:8178–8186. https://doi.org/10.1039/C7NJ02085F

    Article  CAS  Google Scholar 

  33. Karthiga R, Kavitha B, Rajarajan M, Suganthi A (2015) Photocatalytic and antimicrobial activity of NiWO4 nanoparticles stabilized by the plant extract. Mater Sci Semicond Process 40:123–129. https://doi.org/10.1016/j.mssp.2015.05.037

    Article  CAS  Google Scholar 

  34. Srirapu VKV, Kumar PA, Srivastava P, Singh RN, Sinha ASK (2016) Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts. Electrochiimica Acta 209:75–84. https://doi.org/10.1016/j.electacta.2016.05.042

    Article  CAS  Google Scholar 

  35. Gaillard N, Chang Y, DeAngelis A, Higgins S, Braun A (2013) A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting. Int J Hydrog Energ 38:3166–3176. https://doi.org/10.1016/j.ijhydene.2012.12.104

    Article  CAS  Google Scholar 

  36. Shekofteh-Gohari M, Habibi-Yangjeh A (2016) Fabrication of novel magnetically separable visible-light-driven photocatalysts through photosensitization of Fe3O4/ZnO with CuWO4. J Ind Eng Chem 44:174–184. https://doi.org/10.1016/j.jiec.2016.08.028

    Article  CAS  Google Scholar 

  37. Lima AEB, Costa MJS, Santos RS, Batista NC, Cavalcante LS, Longo E, Luz GE Jr (2017) Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim Acta 256:139–145. https://doi.org/10.1016/j.electacta.2017.10.010

    Article  CAS  Google Scholar 

  38. Ding W, Wu X, Lu Q (2019) Structure and photocatalytic activity of thin-walled CuWO4 nanotubes: an experimental and DFT study. Mater Lett 253:323–326. https://doi.org/10.1016/j.matlet.2019.06.109

    Article  CAS  Google Scholar 

  39. Mohanty B, Naik KK, Sahoo S, Jena B, Chakraborty B, Rout CS, Jena BK (2018) Efficient photoelectrocatalytic activity of CuWO4 nanoplates towards the oxidation of NADH driven in visible light. ChemistrySelect 3:9008–9012. https://doi.org/10.1002/slct.201801137

    Article  CAS  Google Scholar 

  40. Zhou M, Liu Z, Li X, Liu Z (2018) Promising three-dimensional flowerlike CuWO4 photoanode modified with CdS and FeOOH for efficient photoelectrochemical water splitting. Ind Eng Chem Res 57:6210–6217. https://doi.org/10.1021/acs.iecr.8b00358

    Article  CAS  Google Scholar 

  41. Lalić MV, Popović ZS, Vukajlović FR (2012) Electronic structure and optical properties of CuWO4: AN ab initio study. Comput Mater Sci 63:163–167. https://doi.org/10.1016/j.commatsci.2012.05.074

    Article  CAS  Google Scholar 

  42. Gonzalez CM, Du X, Dunford JL, Post ML (2012) Copper tungstate thin-films for nitric oxide sensing. Sens Actuators, B Chem 173:169–176. https://doi.org/10.1016/j.snb.2012.06.067

    Article  CAS  Google Scholar 

  43. Poovaragan S, Sundaram R, Magdalane CM, Kaviyarasu K, Maaza M (2019) Photocatalytic activity and humidity sensor studies of magnetically reusable FeWO4–WO3 composite nanoparticles. J Nanosci Nanotechnol 19:859–866. https://doi.org/10.1166/jnn.2019.15565

    Article  CAS  PubMed  Google Scholar 

  44. Lannelongue P, Le Vot S, Fontaine O, Brousse T, Favier F (2019) Electrochemical study of asymmetric aqueous supercapacitors based on high density oxides: C/Ba0.5Sr0.5Co0.8Fe0.2O3-δ and FeWO4/Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Electrochimica Acta. 326:134886. https://doi.org/10.1016/j.electacta.2019.134886

    Article  CAS  Google Scholar 

  45. Kumar RD, Karuppuchamy S (2014) Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications. Ceram Int 40:12397–12402. https://doi.org/10.1016/j.ceramint.2014.04.090

    Article  CAS  Google Scholar 

  46. Kumar RD, Karuppuchamy S (2016) Microwave mediated synthesis of nanostructured Co–WO3 and CoWO4 for supercapacitor applications. J Alloy Compd 674:384–391. https://doi.org/10.1016/j.jallcom.2016.03.074

    Article  CAS  Google Scholar 

  47. Li CL, Fu ZW (2008) Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries. Electrochim Acta 53:4293–4301. https://doi.org/10.1016/j.electacta.2008.01.014

    Article  CAS  Google Scholar 

  48. Liu J, Zhang Z, Wang Z, Tang M, Li J, Yi J, Zuo T, Wu Y, Ma Q (2017) Flower-like WO3/CoWO4/Co nanostructures as high performance anode for lithium ion batteries. J Alloy Compd 727:107–113. https://doi.org/10.1016/j.jallcom.2017.08.057

    Article  CAS  Google Scholar 

  49. Peng T, Liu C, Hou X, Zhang Z, Wang C, Yan H, Lu Y, Liu X, Luo Y (2017) Control growth of mesoporous nickel tungstate nanofiber and its application as anode material for lithium-ion batteries. Electrochim Acta 224:460–467. https://doi.org/10.1016/j.electacta.2016.11.154

    Article  CAS  Google Scholar 

  50. Thongpan W, Louloudakis D, Pooseekheaw P, Kumpika T, Kantarak E, Sroila W, Panthawan A, Thongsuwan W, Singjai P (2019) Porous CuWO4/WO3 composite films with improved electrochromic properties prepared by sparking method. Mater Lett 257:126747. https://doi.org/10.1016/j.matlet.2019.126747

    Article  CAS  Google Scholar 

  51. Tang Y, Rong N, Liu F, Chu M, Dong H, Zhang Y, Xiao P (2016) Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment. Appl Surf Sci 361:133–140. https://doi.org/10.1016/j.apsusc.2015.11.129

    Article  CAS  Google Scholar 

  52. Hu D, Diao P, Xu D, Xia M, Gu Y, Wu Q, Li C, Yang S (2016) Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting. Nanoscale 8:5892–5901. https://doi.org/10.1039/C5NR09210H

    Article  CAS  PubMed  Google Scholar 

  53. Abdul-hamead AA, Salman ZA, Othman FM (2019) Synthesis and characterization of Iron tungstate oxide films by advanced controlled spray pyrolysis technique. Iraqi J Phys 17:29–39. https://doi.org/10.20723/ijp.17.41.29-39

    Article  Google Scholar 

  54. Yourey JE, Bartlett BM (2011) Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for wateroxidation. J Mater Chem 21:7651–7660. https://doi.org/10.1039/C1JM11259G

    Article  CAS  Google Scholar 

  55. Gouveia AF, Vieira VEM, Sczancoski JC, Lemos PS, Rout SK, Arul NS, Longo E, Cavalcante LS (2020) Electronic structure, morphological aspects, and photocatalytic discoloration of three organic dyes with MgWO4 powders synthesized by the complex polymerization method. J Inorg Organomet Polym Mater 30(2020):2952–2970. https://doi.org/10.1007/s10904-019-01435-2

    Article  CAS  Google Scholar 

  56. Benchikhi M, Ouatib RE, Guillemet-Fritsch S, Er-Rakho L, Durand B (2017) Investigation of structural transition in molybdates CuMo1-xWxO4 prepared by polymeric precursor method. Processing and Application of Ceramics 11:21–26. https://doi.org/10.2298/PAC1701021B

    Article  CAS  Google Scholar 

  57. Dimesso L (2016) Pechini processes: an alternate approach of the sol–gel method, preparation, properties, and applications. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol-gel science and technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_123-1

    Chapter  Google Scholar 

  58. Kakihana M (1996) Invited review “sol-gel” preparation of high temperature superconducting oxides. J Sol-Gel Sci Technol 6:7–55. https://doi.org/10.1007/BF00402588

    Article  CAS  Google Scholar 

  59. Maurera MAMA, Souza AG, Soledade LEB, Pontes FM, Longo E, Leite ER, Varela JA (2004) Microstructural and optical characterization of CaWO4 and SrWO4 thin films prepared by a chemical solution method. Mater Lett 58:727–732. https://doi.org/10.1016/j.matlet.2003.07.002

    Article  CAS  Google Scholar 

  60. Cavalcante LS, Sczancoski JC, Albarici VC, Matos JME, Varela JA (2008) Synthesis, characterization, structural refinement and optical absorption behavior of PbWO4 powders. Mater Sci Eng B 150:18–25. https://doi.org/10.1016/j.mseb.2008.02.003

    Article  CAS  Google Scholar 

  61. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46. https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  62. Resende ALS, Costa AGR, Lima AEB, Costa MJS, Longo E, Cavalcante LS, Santos RS (2020) An investigation of photovoltaic devices based on p-type Cu2O and n-type γ-WO3 junction through an electrolyte solution containing a redox pair. Int J Energy Res 45:2797–2809. https://doi.org/10.1002/er.5974

    Article  CAS  Google Scholar 

  63. Gärtner WW (1959) Depletion-layer photoeffects in semiconductors. Phys Rev 116:84–87. https://doi.org/10.1103/PhysRev.116.84

    Article  Google Scholar 

  64. Butler MA (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys 48:1914–1920. https://doi.org/10.1063/1.323948

    Article  CAS  Google Scholar 

  65. Yang W, Prabhakar RR, Tan J, Tilley SD, Moon J (2019) Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem Soc Rev 48:4979–5015. https://doi.org/10.1039/C8CS00997J

    Article  CAS  PubMed  Google Scholar 

  66. Bard AJ, Faulkener LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New Jersey, p 54

    Google Scholar 

  67. Dholam R, Patel N, Santini A, Miotello A (2010) Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int J Hydrogen Energy 35:9581–9590. https://doi.org/10.1016/j.ijhydene.2010.06.097

    Article  CAS  Google Scholar 

  68. Spadavecchia F, Ardizzone S, Cappelletti G, Falciola L, Ceotto M, Lotti D (2013) Investigation and optimization of photocurrent transient measurements on nano-TiO2. J Appl Electrochem 43:217–225. https://doi.org/10.1007/s10800-012-0485-2

    Article  CAS  Google Scholar 

  69. Escobar C, Cid-Dresdner H, Kittl P, Duemler I (1971) The Relation between “light wolframite” and common wolframite. Am Miner 56:489–498

    CAS  Google Scholar 

  70. Weitzel H (1976) Kristallstrukturverfeinerung von Wolframiten und Columbiten. Z Kristallogr 144:238–258. https://doi.org/10.1524/zkri.1976.144.16.238

    Article  Google Scholar 

  71. Kihlborg L, Gebert E (1970) CuWO4, a distorted wolframite-type structure. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 26:1020–1026. https://doi.org/10.1107/S0567740870003515

    Article  CAS  Google Scholar 

  72. Yu F, Cao L, Huang J, Wu J (2013) Effects of pH on the microstructures and optical property of FeWO4 nanocrystallites prepared via hydrothermal method. Ceram Int 39:4133–4138. https://doi.org/10.1016/j.ceramint.2012.10.269

    Article  CAS  Google Scholar 

  73. Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42:4198–4216. https://doi.org/10.1039/C3CS35377J

    Article  CAS  PubMed  Google Scholar 

  74. Wilber. Image Manipulation Program. Gimp—GNU (Version 2.10.30) 21 Dec 2021. https://www.gimp.org/news/2021/12/21/gimp-2-10-30-released/

  75. Kwong WL, Savvides N, Sorrell CC (2012) Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochim Acta 75:371–380. https://doi.org/10.1016/j.electacta.2012.05.019

    Article  CAS  Google Scholar 

  76. Zhang J, Wang Y, Li S, Wang X, Huang F, Xie A, Shen Y (2011) Controlled synthesis, growth mechanism and optical properties of FeWO4 hierarchical microstructures. Cryst Eng Commun 13:5744–5750. https://doi.org/10.1039/C1CE05416C

    Article  CAS  Google Scholar 

  77. Ejima T, Banse T, Takatsuka H, Kondo Y, Ishino M, Kimura N, Watanabe M, Matsubara I (2006) Microscopic optical and photoelectron measurements of MWO4 (M=Mn, Fe, and Ni). J Lumines 119:59–63. https://doi.org/10.1016/j.jlumin.2005.12.012

    Article  CAS  Google Scholar 

  78. Ling C, Zhou LQ, Jia H (2014) First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv 4:24692–24697. https://doi.org/10.1039/C4RA03893B

    Article  CAS  Google Scholar 

  79. Bharati R, Singh RA, Wanklyn BM (1981) On electrical transport in CoWO4 single crystals. J Mater Sci 16:775–779. https://doi.org/10.1007/BF02402795

    Article  CAS  Google Scholar 

  80. Tian CM, Jiang M, Tang D, Qiao L, Xiao HY, Oropeza FE, Hofmann JP, Hensen EJM, Tadich A, Li W, Qi DC, Zhang KHL (2019) Elucidating the electronic structure of CuWO4 thin films for enhanced photoelectrochemical water splitting. J Mater Chem A 7:11895–11907. https://doi.org/10.1039/C8TA12070F

    Article  CAS  Google Scholar 

  81. Ojha DP, Karki HP, Song J, Kim HJ (2018) Decoration of g-C3N4 with hydrothermally synthesized FeWO4 nanorods as the high-performance supercapacitors. Chem Phys Lett 712:83–88. https://doi.org/10.1016/j.cplett.2018.09.070

    Article  CAS  Google Scholar 

  82. Rajagopal S, Khyzhun OY, Djaoued Y, Robichaud J, Mangalaraj D (2010) Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures. J Alloy Compd 493:340–345. https://doi.org/10.1016/j.jallcom.2009.12.099

    Article  CAS  Google Scholar 

  83. Zhu J, Li W, Li J, Li Y, Hu H, Yang Y (2013) Photoelectrochemical activity of NiWO4/WO3 heterojunction photoanode under visible light irradiation. Electrochim Acta 112:191–198. https://doi.org/10.1016/j.electacta.2013.08.146

    Article  CAS  Google Scholar 

  84. Wang H, Wang C, Cui X, Qina L, Ding R, Wang L, Liu Z, Zheng Z, Lv B (2018) Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes. Appl Catal B 221:169–178. https://doi.org/10.1016/j.apcatb.2017.09.011

    Article  CAS  Google Scholar 

  85. Dadigala R, Bandi R, Gangapuram BR, Guttena V (2019) Construction of in situ self-assembled FeWO4/g-C3N4 nanosheet heterostructured Z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. Nanoscale Advances 1:322–333. https://doi.org/10.1039/C8NA00041G

    Article  CAS  PubMed  Google Scholar 

  86. Sadiq MMJ, Shenoy US, Bhat DK (2017) Enhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applications. Mater Today Chem 4:133–141. https://doi.org/10.1016/j.mtchem.2017.04.003

    Article  Google Scholar 

  87. Chen S, Yang G, Jia Y, Zheng H (2016) Facile synthesis of CoWO4 nanosheet arrays grown on nickel foam substrates for asymmetric supercapacitors. ChemElectroChem 3:1490–1496. https://doi.org/10.1002/celc.201600316

    Article  CAS  Google Scholar 

  88. Luo F, Xu R, Ma S, Zhang Q, Hu H, Qu K, Xiao S, Yang Z, Cai W (2019) Engineering oxygen vacancies of cobalt tungstate nanoparticles enable efficient water splitting in alkaline medium. Appl Catal B: Environ 259:118090. https://doi.org/10.1016/j.apcatb.2019.118090

    Article  CAS  Google Scholar 

  89. Chen S, Yang G, Jia Y, Zheng H (2017) Three-dimensional NiCo2O4@NiWO4 core–shell nanowire arrays for high performance supercapacitors. J Mater Chem A 5:1028–1034. https://doi.org/10.1039/C6TA08578D

    Article  CAS  Google Scholar 

  90. Nesbitt HW, Legrand D, Bancroft GM (2000) Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys Chem Miner 27:357–366. https://doi.org/10.1007/s002690050265

    Article  CAS  Google Scholar 

  91. McIntyre S, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47:2208–2213. https://doi.org/10.1021/ac60363a034

    Article  CAS  Google Scholar 

  92. Dong H, Li Y, Gao D, Zhou M, Hu X, Peng H, Yang L, He J, Zhang Y, Xiao P (2019) Efficient self-assembly solvothermal synthesis of octahedral CuWO4 microstructures assisted by ethylene glycol. J Alloy Compd 785:660–668. https://doi.org/10.1016/j.jallcom.2019.01.224

    Article  CAS  Google Scholar 

  93. Signorelli AJ, Hayes RG (1973) X-Ray photoelectron spectroscopy of various core levels of lanthanide ions: the roles of monopole excitation and electrostatic coupling. Phys Rev B 8:81–86. https://doi.org/10.1103/PhysRevB.8.81

    Article  CAS  Google Scholar 

  94. Cao X, Chen Y, Jiao S, Fang Z, Xu M, Liu X, Li L, Pang G, Feng S (2014) Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 6:12366–12370. https://doi.org/10.1039/C4NR03729D

    Article  CAS  PubMed  Google Scholar 

  95. Liu Z, Song Q, Zhou M, Guo Z, Kang J, Yan H (2019) Synergistic enhancement of charge management and surface reaction kinetics by spatially separated cocatalysts and p–n heterojunctions in Pt/CuWO4/Co3O4 photoanode. Chem Eng J 374:554–563. https://doi.org/10.1016/j.cej.2019.05.191

    Article  CAS  Google Scholar 

  96. Yang J, Li C, Diao P (2019) Molybdenum doped CuWO4 nanoflake array films as an efficient photoanode for solar water splitting. Electrochim Acta 308:195–205. https://doi.org/10.1016/j.electacta.2019.04.044

    Article  CAS  Google Scholar 

  97. Liu L, Mei Z, Tang A, Azarov A, Kuznetsov A, Xue QK, Du X (2016) Oxygen vacancies: the origin of n-type conductivity in ZnO. Phys Rev B 93:235305. https://doi.org/10.1103/physrevb.93.235305

    Article  Google Scholar 

  98. Oliveira HG, Ferreira LH, Bertazzoli R, Longo C (2015) Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator. Water Res 72:305–314. https://doi.org/10.1016/j.watres.2014.08.042

    Article  CAS  PubMed  Google Scholar 

  99. Lim Y-F, Chua CS, Lee CJJ, Chi D (2014) Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys Chem Chem Phys 16:25928–25934. https://doi.org/10.1039/C4CP03241A

    Article  CAS  PubMed  Google Scholar 

  100. Xiong X, Fan L, Chen G, Wang Y, Wu C, Chen D, Lin Y, Li T, Fu S, Ren S (2019) Boosting water oxidation performance of CuWO4 photoanode by surface modification of nickel phosphate. Electrochim Acta 328:135125. https://doi.org/10.1016/j.electacta.2019.135125

    Article  CAS  Google Scholar 

  101. Hankin A, Bedoya-Lora FE, Alexander JC, Regoutz A, Kelsall GH (2019) Flat band potential determination: avoiding the pitfalls. J Mater Chem A 7:26162–26176. https://doi.org/10.1039/C9TA09569A

    Article  CAS  Google Scholar 

  102. Costa MJS, Costa GS, Lima AEB, Luz GE Jr, Longo E, Cavalcante LS, Santos RS (2018) Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density. Ionics 24:3291–3297. https://doi.org/10.1007/s11581-018-2640-1

    Article  CAS  Google Scholar 

  103. Radecka M, Rekas M, Trenczek-Zajac A, Zakrzewska K (2008) Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J Power Sour 181:46–55. https://doi.org/10.1016/j.jpowsour.2007.10.082

    Article  CAS  Google Scholar 

  104. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energ 27:991–1021. https://doi.org/10.1016/S0360-3199(02)00022-8

    Article  CAS  Google Scholar 

  105. Liu Y, Li J, Li W, He H, Yang Y, Li Y, Chen Q (2016) Electrochemical doping induced in situ homo-species for enhanced photoelectrochemical performance on WO3 nanoparticles film photoelectrodes. Electrochim Acta 210:251–260. https://doi.org/10.1016/j.electacta.2016.05.165

    Article  CAS  Google Scholar 

  106. Shrestha NK, Schmuki P (2013) Electrochemistry at TiO2 nanotubes and other semiconductor nanostructures. Electrochemistry 12:87–131. https://doi.org/10.1039/9781849737333-00087

    Article  CAS  Google Scholar 

  107. Alpuche-Aviles MA, Wu Y (2009) Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method. J Am Chem Soc 131:3216–3224. https://doi.org/10.1021/ja806719x

    Article  CAS  PubMed  Google Scholar 

  108. Paulauskas IE, Katz JE, Jellison GE Jr, Lewis NS, Boatner LA, Brown GM (2009) Growth, characterization, and electrochemical properties of doped n-type KTaO3 photoanodes. J Electrochem Soc 156:B580–B587. https://doi.org/10.1149/1.3089281

    Article  CAS  Google Scholar 

  109. Chen H, Leng W, Xu Y (2014) Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J Phys Chem C 118:9982–9989. https://doi.org/10.1021/jp502616h

    Article  CAS  Google Scholar 

  110. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758. https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  111. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68. https://doi.org/10.1021/cr00033a003

    Article  CAS  Google Scholar 

  112. Polo A, Nomellini C, Grigioni I, Dozzi MV, Selli E (2020) Effective visible light exploitation by copper molybdo-tungstate photoanode. ACS Appl Energ Mater 3:6956–6964. https://doi.org/10.1021/acsaem.0c01021

    Article  CAS  Google Scholar 

  113. Duan X, Xu C, El Nahrawy AMJ, Chen Z, Zhu J, Wang Q, Liang F. Cao (2022) Ultrasonic spray pyrolysis-assisted fabrication of ultrathin CuWO4 films with improved photoelectrochemical performance. ChemNanoMat 8:e202100419. https://doi.org/10.1002/cnma.202100419

    Article  CAS  Google Scholar 

  114. Lima AEB, Assis M, Resende ALS, Santos HLS, Mascaro LH, Longo E, Santos RS, Cavalcante LS, Luz GE Jr (2022) CuWO4|MnWO4 heterojunction thin film with improved photoelectrochemical and photocatalytic properties using simulated solar irradiation. J Solid State Electrochem 26:997–1011. https://doi.org/10.1007/s10008-022-05143-9

    Article  CAS  Google Scholar 

  115. Chidambaram S, Ramachandran K, Gaidi M, Daoudi K, Natarajamoorthy M (2021) Solution combustion synthesis of iron tungstate nanoparticles for photoelectrochemical water splitting towards oxygen evolution. J Mater Sci: Mater Electron 33:9134–9143. https://doi.org/10.1007/s10854-021-07146-0

    Article  CAS  Google Scholar 

  116. Rosa WS, Rabelo LG, Zampaulo LGT, Gonçalves RV (2022) Ternary oxide CuWO4/BiVO4/FeCoOx films for photoelectrochemical water oxidation: insights into the electronic structure and interfacial band alignment. ACS Appl Mater Interfaces 14(20):22858–22869. https://doi.org/10.1021/acsami.1c21001

    Article  CAS  Google Scholar 

  117. Chatterjee P, Chakraborty AK (2022) Enhanced solar water oxidation by CoWO4–WO3 heterojunction photoanode. Sol Energ 232:312–319. https://doi.org/10.1016/j.solener.2021.12.075

    Article  CAS  Google Scholar 

  118. Cho HE, Yun G, Arunachalam M, Ahn KS, Kim CS, Lim D-H, Kang SH (2018) Nanolayered CuWO4 decoration on fluorine-doped SnO2 inverse opals for solar water oxidation. J Electrochem Sci Technol 9:282–291. https://doi.org/10.5229/JECST.2018.9.4.282

    Article  CAS  Google Scholar 

  119. Zhang Y, Wang L, Xu X (2021) A bias-free CuBi2O4–CuWO4 tandem cell for solar-driven water splitting. Inorg Chem Front 8:3863–3870. https://doi.org/10.1039/D1QI00088H

    Article  CAS  Google Scholar 

  120. Ahmed MI, Adam A, Khan A, Rehman AU, Qamaruddin M, Siddiqui MN, Qamar M (2016) Improved photoelectrochemical water oxidation under visible light with mesoporous CoWO4. Mater Lett 183:281–284. https://doi.org/10.1016/j.matlet.2016.07.137

    Article  CAS  Google Scholar 

  121. Babu ES, Rani BJ, Ravi G, Yuvakkumar R, Guduru RK, Ganesh V, Kim S (2018) Novel NiWO4 nanoberries morphology effect on photoelectrochemical properties. Mater Lett 220:209–212. https://doi.org/10.1016/j.matlet.2018.03.018

    Article  CAS  Google Scholar 

  122. Ahmed MI, Adam A, Khan A, Siddiqui MN, Yamani Z, Qamar HM (2016) Synthesis of mesoporous NiWO4 nanocrystals for enhanced photoelectrochemical water oxidation. Mater Lett 177:135–138. https://doi.org/10.1016/j.matlet.2016.04.143

    Article  CAS  Google Scholar 

  123. Sun Y, Du F, Xie D, Yang D, Jiao Y, Jia L, Fan H (2020) Improved water oxidation via Fe doping of CuWO4 photoanodes: influence of the Fe source and concentration. Chinese Phys B 29:127801. https://doi.org/10.1088/1674-1056/aba9cb

    Article  CAS  Google Scholar 

  124. Chen Z, Löber M, Rokicińska A, Ma Z, Chen J, Kuśtrowski P, Meyer H-J, Dronskowski R, Slabon A (2020) Increased photocurrent of CuWO4 photoanodes by modification with the oxide carbodiimide Sn2O(NCN). Dalton Trans 49:3450–3456. https://doi.org/10.1039/C9DT04752B

    Article  CAS  PubMed  Google Scholar 

  125. Balasubramanian V, Kannan S, Thangaraj NS, Sivakumar G, Mohanraj K (2020) Role of W-Rich CuWO4 and Doped Zn–CuWO4 ceramics and its improved photoelectrochemical cell performances synthesized by solid state reaction method. ChemistrySelect 5:8959–8968. https://doi.org/10.1002/slct.202000229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Brazilian authors acknowledge the financial support from the Brazilian research financing institutions: CNPq (312318/2017-0 and 408036/2018-4), CCN2-PPGCM-UFPI-LIMAV, GERATEC-UESPI-CETEM, FAPESP-CDMF (13/07296-2) and CAPES.

Funding

The authors do have not any funding to pay for open access.

Author information

Authors and Affiliations

Authors

Contributions

MJSC: conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft, writing—review & editing, visualization. AEBL: methodology, investigation. EPR: resources, methodology, investigation. GSC: methodology, investigation, formal analysis. EL: conceptualization, writing—review & editing, GELJ: conceptualization, methodology, writing—review & editing. LSC: conceptualization, methodology, project administration, writing—review & editing and RSS: conceptualization, methodology, writing—review & editing, project administration, and supervision. All authors participated in writing the manuscript and discussing all the results.

Corresponding author

Correspondence to Laecio Santos Cavalcante.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 790 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M.J.d.S., Lima, A.E.B., Ribeiro, E.P. et al. Transition metal tungstates AWO4 (A2+  = Fe, Co, Ni, and Cu) thin films and their photoelectrochemical behavior as photoanode for photocatalytic applications. J Appl Electrochem 53, 1349–1367 (2023). https://doi.org/10.1007/s10800-023-01851-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01851-w

Keywords

Navigation