Skip to main content
Log in

Decomposition of Carbon Dioxide in Microwave Discharges (an Analytical Review)

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

An analytical review of the results of experimental studies of carbon dioxide decomposition in microwave discharges is presented. Based on comparative analysis of published data, an attempt is made to determine the discharge parameters and installation design ensuring the maximal values of the degrees of carbon dioxide decomposition and of the energy efficiency. The maximal values of the carbon dioxide decomposition (29%) and energy efficiency (47–90%) are reached in discharge installations based on transmission lines and cavities operating in the continuous mode at a frequency of 2.45 GHz in subsonic and supersonic gas flows at power consumptions of approximately 7 eV/molecule and pressures from 100 to 150 torr. Installations in which pulsed microwave radiation sources and catalysts are used for carbon dioxide utilization are of potential interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Song, C.S., Catal. Today, 2006, vol. 115, pp. 2–32. https://doi.org/10.1016/j.cattod.2006.02.029

    Article  CAS  Google Scholar 

  2. Centi, G. and Perathoner, S., Catal. Today, 2009, vol. 148, pp. 191–205. https://doi.org/10.1016/j.cattod.2009.07.075

    Article  CAS  Google Scholar 

  3. Omae, I., Coord. Chem. Rev., 2012, vol. 256, pp. 1384–1405. https://doi.org/10.1016/j.ccr.2012.03.017

    Article  CAS  Google Scholar 

  4. Dimitriou, I., Garcia-Gutierrez, P., Elder, R.H., Cuellar-Franca, R.M., Azapagic, A., and Allen, R.W.K., Energy Environ. Sci., 2015, vol. 8, pp. 1775–1789. https://doi.org/10.1039/C4EE04117H

    Article  CAS  Google Scholar 

  5. Pardia, B., Iniyan, S., and Goic, R., Renew. Sustain. Energy Rev., 2011, vol. 15, no. 3, pp. 1625–1636. https://doi.org/10.1016/j.rser.2010.11.032

    Article  CAS  Google Scholar 

  6. Thirugnanasambandam, M., Iniyan, S., and Goic, R., Renew. Sustain. Energy Rev., 2010, vol. 14, no. 1, pp. 312–322. https://doi.org/10.1016/j.rser.2009.07.014

    Article  CAS  Google Scholar 

  7. Kucheryavyi, V.I., Gorlovskii, D.M., and Al’tshuler, L.N., Tekhnologiya karbamida (Urea Technology), Leningrad: Khimiya, 1981.

    Google Scholar 

  8. Chekalin, M.A., Passet, B.V., and Ioffe, B.A., Tekhnologiya organicheskikh gasitelei i promezhutochnykh produktov (Technology of Organic Quenching Agents and Intermediates), Leningrad: Khimiya, 1980.

    Google Scholar 

  9. Snoeckx, R. and Bogaerts, A., Chem. Soc. Rev., 2017, vol. 46, no. 19, pp. 5805–5863. https://doi.org/10.1039/C6CS00066E

    Article  CAS  PubMed  Google Scholar 

  10. George, A., Shen, B., Craven, M., Wang, Y., Kang, D., Wu, C., and Tu, X., Renew. Sustain. Energy Rev., 2021, vol. 135, ID 109702. https://doi.org/10.1016/j.rser.2020.109702

    Article  CAS  Google Scholar 

  11. Gurvich, L.V., Karachevtsev, G.V., Kondrat’ev, V.N., Lebedev, Yu.A., Medvedev, V.A., Potapov, V.K., and Khodeev, Yu.S., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu (Dissociation Energies of Chemical Bonds. Ionization Potentials and Electron Affinities), Moscow: Nauka, 1974.

    Google Scholar 

  12. Albo, J., Alvarez-Guerra, M., Castano, P., and Irabien, A., Green Chem., 2015, vol. 17, pp. 2304–2324. https://doi.org/10.1039/C4GC02453B

    Article  CAS  Google Scholar 

  13. Olah, G.A., Goeppert, A., and Prakash, G.K.S., J. Org. Chem., 2009, vol. 74, no. 2, pp. 487–498. https://doi.org/10.1021/jo801260f

    Article  CAS  PubMed  Google Scholar 

  14. Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazabal, G.O., Perez-Ramirez, J., Larrazabal, G.O., and Perez-Ramirez, J., Energy Environ. Sci., 2013, vol. 6, no. 11, pp. 3112–3135. https://doi.org/10.1039/C3EE41272E

    Article  CAS  Google Scholar 

  15. Qiao, J., Liu, Y., Hong, F., and Zhang, J., Chem. Soc. Rev., 2014, vol. 43, pp. 631–675. https://doi.org/10.1039/C3CS60323G

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., and Kubiak, C.P., Annu. Rev. Phys. Chem., 2012, vol. 63, pp. 541–569. https://doi.org/10.1146/annurev-physchem-032511-143759

    Article  CAS  PubMed  Google Scholar 

  17. Ganesh, I., Renew. Sustain. Energy Rev., 2014, vol. 31, pp. 221–257. https://doi.org/10.1016/j.rser.2013.11.045

    Article  CAS  Google Scholar 

  18. Verma, S., Kim, B., Jhong, H.-R., Ma, S., and Kenis, P.J.A., ChemSusChem, 2016, vol. 9, pp. 1972–1979. https://doi.org/10.1002/cssc.201600394

    Article  CAS  PubMed  Google Scholar 

  19. Smestad, G.P. and Steinfeld, A., Ind. Eng. Chem. Res., 2012, vol. 51, pp. 11828–11840. https://doi.org/10.1021/ie3007962

    Article  CAS  Google Scholar 

  20. Scheffe, J.R. and Steinfeld, A., Mater. Today, 2014, vol. 17, pp. 341–348. https://doi.org/10.1016/j.mattod.2014.04.025

    Article  CAS  Google Scholar 

  21. Izumi, Y., Coord. Chem. Rev., 2013, vol. 257, pp. 171–186. https://doi.org/10.1016/j.ccr.2012.04.018

    Article  CAS  Google Scholar 

  22. Chueh, W.C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., and Steinfeld, A., Science, 2010, vol. 330, pp. 1797–1801. https://doi.org/10.1126/science.1197834

    Article  PubMed  Google Scholar 

  23. McDaniel, A.H., Miller, E.C., Arifin, D., Ambrosini, A., Coker, N., O’Hayre, R., Chueh, W.C., and Tong, J., Energy Environ. Sci., 2013, vol. 6, pp. 2424–2428. https://doi.org/10.1039/C3EE41372A

    Article  CAS  Google Scholar 

  24. Das, S. and Wan Daud, W.M.A., RSC Adv., 2014, vol. 4, pp. 20856–20893. https://doi.org/10.1039/C4RA01769B

    Article  CAS  Google Scholar 

  25. Roy, S.C., Varghese, O.K., Paulose, M., and Grimes, C.A., ACS Nano, 2010, vol. 4, pp. 1259–1278. https://doi.org/10.1021/nn9015423

    Article  CAS  PubMed  Google Scholar 

  26. Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., and Hankamer, B., Bioenergy Res., 2008, vol. 1, pp. 20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  27. Brennan, L. and Owende, P., Renew. Sustain. Energy Rev., 2010, vol. 14, no. 2, pp. 557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  28. Halim, R., Danquah, M.K., and Webley, P.A., Biotechnol. Adv., 2012, vol. 30, pp. 709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  29. Shen, Y., RSC Adv., 2014, vol. 4, pp. 49672–49722. https://doi.org/10.1039/c4ra06441k

    Article  CAS  Google Scholar 

  30. Mikkelsen, M., Jorgensen, M., and Krebs, F.C., Energy Environ. Sci., 2010, vol. 3, no. 1, pp. 43–81. https://doi.org/10.1039/b912904a

    Article  CAS  Google Scholar 

  31. Martens, J.A., Bogaerts, A., De Kimpe, N., Jacobs, P.A., Marin, G.B., Rabaey, K., Saeys, M., and Verhelst, S., ChemSusChem, 2017, vol. 10, pp. 1039–1055. https://doi.org/10.1002/cssc.201601051

    Article  CAS  PubMed  Google Scholar 

  32. Aresta, M., Dibenedetto, A., and Angelini, A., Chem. Rev., 2014, vol. 114, pp. 1709–1742. https://doi.org/10.1021/cr4002758

    Article  CAS  PubMed  Google Scholar 

  33. Wang, W., Wang, S., Ma, X., and Gong, J., Chem. Soc. Rev., 2011, vol. 40, pp. 3703–3727. https://doi.org/10.1039/C1CS15008A

    Article  CAS  PubMed  Google Scholar 

  34. Navarrete, A., Centi, G., Bogaerts, A., Martin, A., York, A., and Stefanidis, D., Energy Technol., 2017, vol. 5, no. 6, pp. 796–811. https://doi.org/10.1002/ente.201600609

    Article  Google Scholar 

  35. Zhang, X., Lee, C.S., Mingos, D.M.P., and Hayward, D.O., Catal. Lett., 2003, vol. 88, pp. 129–139. https://doi.org/10.1023/A:1024049403422

    Article  CAS  Google Scholar 

  36. Fidalgo, B., Dominguez, A., Pis, J., and Menendez, J., Int. J. Hydrogen Energy, 2008, vol. 33, pp. 4337–4344. https://doi.org/10.1016/j.ijhydene.2008.05.056

    Article  CAS  Google Scholar 

  37. Legasov, V.A., Zhivotov, V.K., Krasheninnikov, E.G., Krotov, M.F., Patrushev, B.I., Rusanov, V.D., Rykunov, G.V., Spektor, A.M., Fridman, A.A., and Sholin, G.V., Dokl. Akad. Nauk SSSR, 1978, vol. 238, no. 1, pp. 66–69.

    CAS  Google Scholar 

  38. Rusanov, V.D. and Fridman, A.A., Fizika khimicheski aktivnoi plazmy (Physics of Chemically Active Plasma), Moscow: Nauka, 1984.

    Google Scholar 

  39. Fridman, A., Plasma Chemistry, New York: Cambridge Univ. Press, 2008, pp. 259–317.

    Article  Google Scholar 

  40. Qin, Y., Niu, G., Wang, X., Luo, D., and Duan, Y., J. CO2 Util., 2018, vol. 28, pp. 283–291. https://doi.org/10.1016/J.JCOU.2018.10.003

    Article  CAS  Google Scholar 

  41. Plasma Physics and Plasma Electronics, Kovrizhnykh, L.M., Ed., New York: Nova Science, 1985.

    Google Scholar 

  42. Conrads, H. and Schmidt, M., Plasma Sources Sci. Technol., 2000, vol. 9, pp. 441–454. https://doi.org/10.1088/0963-0252/9/4/301

    Article  CAS  Google Scholar 

  43. Bogaerts, A., Neyts, E., Gijbels, R., and Van der Mullen, J., Spectrochim. Acta, Part B: At. Spectrosc., 2002, vol. 57, no. 4, pp. 609–658. https://doi.org/10.1016/S0584-8547(01)00406-2

    Article  Google Scholar 

  44. Tendero, C., Tixier, C., Tristant, P., Desmaison, J., and Leprince, P., Spectrochim. Acta, Part B: At. Spectrosc., 2006, vol. 61, pp. 2–30. https://doi.org/10.1016/j.sab.2005.10.003

    Article  CAS  Google Scholar 

  45. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 2009.

    Google Scholar 

  46. Lebedev, Yu.A., Plasma Sources Sci. Technol., 2015, vol. 24, no. 5, ID 053001. https://doi.org/10.1088/0963-0252/24/5/053001

    Article  CAS  Google Scholar 

  47. Vesel, A., Mozetic, M., Drenik, A., and Balat-Pichelin, M., Chem. Phys., 2011, vol. 382, pp. 127–131. https://doi.org/10.1016/j.chemphys.2011.03.015

    Article  CAS  Google Scholar 

  48. Spencer, L.F. and Gallimor, A.D., Plasma Sources Sci. Technol., 2013, vol. 22, ID 015019. https://doi.org/10.1088/0963-0252/22/1/015019

    Article  CAS  Google Scholar 

  49. Van Rooij, G.J., Van den Bekerom, D.C.M., Den Harder, N., Minea, T., Berden, G., Bongers, W.A., Engeln, R., Graswinckel, M.F., Zoethouta, E., and Van de Sandenac, M.C.M., Faraday Discuss., 2015, vol. 183, pp. 233–248. https://doi.org/10.1039/c5fd00045a

    Article  CAS  PubMed  Google Scholar 

  50. Den Harder, N., Van den Bekerom, D.C.M., Richard, S.A., Graswinckel, M.F., Palomares, J.M., Peeters, F.J.J., Ponduri, S., Minea, T., Bongers, W.A., Van de Sanden, M.C.M., and Van Rooij, G.J., Plasma Process. Polym., 2017, vol. 14, ID 1600120. https://doi.org/10.1002/ppap.201600120

    Article  CAS  Google Scholar 

  51. Belov, I., Vermeiren, V., Paulussen, S., and Bogaerts, A., J. CO2 Util., 2018, vol. 24, pp. 386–397. https://doi.org/10.1016/j.jcou.2017.12.009

    Article  CAS  Google Scholar 

  52. Silva, T., Britun, N., Godfroid, T., and Snyders, R., Plasma Process. Polym., 2017, vol. 14, no. 6, ID 1600103. https://doi.org/10.1002/ppap.201600103

    Article  CAS  Google Scholar 

  53. Van den Bekerom, D.C.M., Linares, J.M.P., Verreycken, T., Van Veldhuizen, E.M., Nijdam, S., Berden, G., Bongers, W.A., Van de Sanden, M.C.M., and Van Rooij, G.J., Plasma Sources Sci. Technol., 2019, vol. 28, ID 055015. https://doi.org/10.1088/1361-6595/aaf519

    Article  CAS  Google Scholar 

  54. Mohsenian, S., Nagassou, D., Elahi, R., Yu, P., Nallar, M., Wong, H.-W., and Trellers, J.P., J. CO2 Util., 2019, vol. 40, pp. 725–723. https://doi.org/10.1016/j.jcou.2019.09.002

    Article  CAS  Google Scholar 

  55. Mansfeld, D., Sintsov, S., Chekmarev, N., and Vodopyanov, A., J. CO2 Util., 2020, vol. 40, ID 101197. https://doi.org/10.1016/j.jcou.2020.101197

    Article  CAS  Google Scholar 

  56. Kim, H., Song, S., Tom, C.P., and Xie, F., J. CO2 Util., 2020, vol. 37, pp. 240–247. https://doi.org/10.1016/j.jcou.2019.12.011

    Article  CAS  Google Scholar 

  57. Azizov, R.I., Vakar, A.K., Zhivotov, V.K., Krotov, M.F., Zinov’ev, O.A., Potapkin, B.V., Rusanov, A.A., Rusanov, V.D., and Fridman, A.A., Dokl. Akad. Nauk SSSR, 1983, vol. 271, no. 1, pp. 94–98.

    CAS  Google Scholar 

  58. Bongers, W., Bouwmeester, H., Wolf, B., Peeters, F., Welzel, S., Van den Bekerom, D., Den Harder, N., Goede, A., Graswinckel, M., Groen, P.W., Kopecki, J., Leins, M., Van Rooij, G., Schulz, A., Walker, M., and Van de Sanden, R., Plasma Process. Polym., 2017, vol. 14, ID 1600126. https://doi.org/10.1002/ppap.201600126

    Article  CAS  Google Scholar 

  59. Znamenskaya, I.A., Gvozdeva, L.G., and Znamenskii, N.V., Metody vizualizatsii v mekhanike gaza (Imaging Methods in Gas Mechanics), Moscow: Mosk. Aviats. Inst., 2001.

    Google Scholar 

  60. Slovetskii, D.I., Mekhanizmy khimicheskikh reaktsii v neravnovesnoi plazme (Mechanisms of Chemical Reactions in Nonequilibrium Plasma), Moscow: Nauka, 1980.

    Google Scholar 

  61. Ochkin, V.N., Spectroscopy of Low Temperature Plasma, Weinheim,: Wiley-VCH, 2009.

    Book  Google Scholar 

  62. Lelevkin, V.M. and Otorbaev, D.K., Eksperimental’nye metody i teoreticheskie modeli v fizike neravnovesnoi plazmy (Experimental Methods and Theoretical Models in Nonequilibrium Plasma Physics), Zheenbaev, Zh.Zh., Ed., Frunze: Ilim, 1988.

    Google Scholar 

  63. Corvin, K.K. and Corrigan, S.J., J. Chem. Phys., 1969, vol. 50, pp. 2570–2574. https://doi.org/10.1063/1.1671416

    Article  CAS  Google Scholar 

  64. Shakhatov, V.A., Mavlyudov, T.B., and Lebedev, Yu.A., High Temp., 2013, vol. 51, no. 4, pp. 551–565. https://doi.org/10.1134/S0018151X13040226 

    Article  CAS  Google Scholar 

  65. Shekhter, A.B., Khimicheskie reaktsii v elektricheskom razryade (Chemical Reactions in Electric Discharge), Leningrad: ONTi—Glav. Red. Obshchetekhnicheskoi Literatury, 1935.

    Google Scholar 

  66. Pearse, R.W.B. and Gaydon, A.G., The Identification of Molecular Spectra, London: Nature, 1941.

    Google Scholar 

  67. Rond, C., Bultel, A., Boubert, P., and Chéron, B.G., Chem. Phys., 2008, vol. 354, pp. 16–26. https://doi.org/10.1016/j.chemphys.2008.09.006

    Article  CAS  Google Scholar 

  68. Demtreder, W., Laser Spectroscopy. Basic Concepts and Instrumentation, Berlin: Springer, 1982.

    Google Scholar 

  69. Britun, N., Godfroid, T., and Snyders, R., Plasma Sources Sci. Technol., 2012, vol. 21, no. 3, ID 035007. https://doi.org/10.1088/0963-0252/21/3/035007

    Article  CAS  Google Scholar 

  70. Kozak, T. and Bogaerts, A., Plasma Sources Sci. Technol., 2014, vol. 23, ID 045004. https://doi.org/10.1088/0963-0252/23/4/045004

    Article  CAS  Google Scholar 

  71. Silva, T., Britun, N., Godfroid, T., and Snyders, R., Plasma Sources Sci. Technol., 2014, vol. 23, ID 025009. https://doi.org/10.1088/0963-0252/23/2/025009

    Article  CAS  Google Scholar 

  72. Britun, N., De Silva, T., Chen, G., Godfroid, T., Van der Mullen, J., and Sniders, R., J. Phys. D: Appl. Phys., 2018, vol. 51, ID 144002. https://doi.org/10.1088/1361-6463/aab1ad

    Article  CAS  Google Scholar 

  73. Godfroid, T., Dauchot, J.P., and Hecq, M., Surf. Coat. Technol., 2003, vols. 174–175, pp. 1276–1281. https://doi.org/10.1016/S0257-8972(03)00690-X

    Article  CAS  Google Scholar 

  74. Coburn, J.W. and Chen, M., J. Appl. Phys., 1980, vol. 51, pp. 3134–3136. https://doi.org/10.1063/1.328060

    Article  CAS  Google Scholar 

  75. Abdel-Rahman, M., Schulz-von der Gathen, V., Gans, T., Niemi, K., and Dobele, H.F., Plasma Sources Sci. Technol., 2006, vol. 15, pp. 620–626. https://doi.org/10.1088/0963-0252/15/4/005

    Article  CAS  Google Scholar 

  76. Ricard, A., Henriques, J., Cousty, S., Villeger, S., and Amorim, J., Plasma Process. Polym., 2007, vol. 4, pp. 5965–5968. https://doi.org/10.1002/ppap.200732308

    Article  Google Scholar 

  77. Van de Sande, M.J. and Van der Mullen, J.J.A.M., J. Phys. D: Appl. Phys., 2002, vol. 35, pp. 1381–1391. https://doi.org/10.1088/0022-3727/35/12/314

    Article  CAS  Google Scholar 

  78. Carbone, E. and Nijdam, S., Plasma Phys. Control. Fusion, 2015, vol. 57, ID 014026. https://doi.org/10.1088/0741-3335/57/1/014026

    Article  Google Scholar 

  79. Tsuji, M., Tanoue, T., Nakano, K., and Nishimura, Y., Chem. Lett., 2001, vol. 30, no. 1, pp. 22–23. https://doi.org/10.1246/cl.2001.22

    Article  Google Scholar 

  80. Heijkers, S., Snoeckx, R., Kozak, T., Silva, T., Godfroid, T., Britun, N., Snyders, R., and Bogaerts, A., J. Phys. Chem. C, 2015, vol. 119, pp. 12815–12828. https://doi.org/10.1021/acs.jpcc.5b01466

    Article  CAS  Google Scholar 

  81. Savinov, S.Y., Lee, H., Song, H.K., and Na, B.-K., Korean J. Chem. Eng., 2002, vol. 19, pp. 564–566. https://doi.org/10.1007/BF02705494

    Article  CAS  Google Scholar 

  82. Smith, K. and Thomson, R.M., Computer Modeling of Gas Lasers, New York: Plenum, 1978.

    Book  Google Scholar 

  83. Makhlouf, M., Sazhin, S., Leys, C., Toebaert, D., and Wild, P., Infrared Phys., 1993, vol. 34, no. 5, pp. 525–532. https://doi.org/10.1016/0020-0891(93)90086-M

    Article  CAS  Google Scholar 

  84. Grudszus, S. and Marz, M., J. Phys. D: Appl. Phys., 1993, vol. 26, no. 11, pp. 1980–1986. https://doi.org/10.1088/0022-3727/26/11/021

    Article  Google Scholar 

  85. Pietanza, L.D., Colonna, G., D’Ammando, G., Laricchiuta, A., and Capitelli, M., Plasma Sources Sci. Technol., 2015, vol. 24, ID 42002. https://doi.org/10.1088/0963-0252/24/4/042002

    Article  CAS  Google Scholar 

  86. Grofulovic, M., Alves, L.L., and Guerra, V., J. Phys. D: Appl. Phys., 2016, vol. 49, ID 395207. https://doi.org/10.1088/0022-3727/49/39/395207

    Article  CAS  Google Scholar 

  87. Pietanza, L.D., Colonna, G., D’Ammando, G., Laricchiuta, A., and Capitelli, M., Chem. Phys., 2016, vol. 468, pp. 44–52. https://doi.org/10.1016/j.chemphys.2016.01.007

    Article  CAS  Google Scholar 

  88. Berthelot, A. and Bogaerts, A., Plasma Sources Sci. Technol., 2016, vol. 25, ID 45022. https://doi.org/10.1088/0963-0252/25/4/045022

    Article  CAS  Google Scholar 

  89. Bogaerts, A., Wang, W., Berthelot, A., and Guerra, V., Plasma Sources Sci. Technol., 2016, vol. 25, no. 5, ID 055016. https://doi.org/10.1088/0963-0252/25/5/055016

    Article  CAS  Google Scholar 

  90. Lebedev, Yu.A. and Shakhatov, V.A., High Energy Chem., 2021, vol. 55, no. 6, pp. 419–435. https://doi.org/10.1134/S0018143921300019

    Article  CAS  Google Scholar 

  91. Lebedev, Yu.A. and Shakhatov, V.A., Usp. Prikl. Fiz., 2021, vol. 9, no. 5, pp. 365–392. https://doi.org/10.51368/2307-4469-2021-9-5-365-392

    Article  Google Scholar 

  92. Bogaerts, A., De Bie, C., Snoeckx, R., and Kozak, T., Plasma Process. Polym., 2017, vol. 14, no. 6, ID e1600070. https://doi.org/10.1002/ppap.201600070

    Article  CAS  Google Scholar 

  93. Kozak, T. and Bogaerts, A., Plasma Sources Sci. Technol., 2015, vol. 24, ID 015024. https://doi.org/10.1088/0963-0252/24/1/015024

    Article  CAS  Google Scholar 

  94. Berthelot, A. and Bogaerts, A., J. Phys. Chem. C, 2017, vol. 121, pp. 8236–8251. https://doi.org/10.1021/acs.jpcc.6b12840

    Article  CAS  Google Scholar 

  95. Bogaerts, A., Berthelot, A., Heijkers, S., Kolev, St., Snoeckx, R., Sun, S., Trenchev, G., Van Laer, K., and Wang, W., Plasma Sources Sci. Technol., 2017, vol. 26, ID 063001. https://doi.org/10.1088/1361-6595/AA6ADA

    Article  Google Scholar 

  96. Pietanza, L.D., Colonna, C., and Capitelli, M., Phys. Plasmas, 2020, vol. 27, no. 2, ID 023513. https://doi.org/10.1063/1.5139625

    Article  CAS  Google Scholar 

  97. Aerts, R., Martens, T., and Bogaerts, A., J. Phys. Chem. C, 2012, vol. 116, pp. 23257–23273. https://doi.org/10.1021/jp307525t

    Article  CAS  Google Scholar 

  98. Laux, C.O., Spence, T.G., Kruger, C.H., and Zare, R.N., Plasma Sources Sci. Technol., 2003, vol. 12, pp. 125–138. https://doi.org/10.1088/0963-0252/12/2/301

    Article  CAS  Google Scholar 

  99. Averin, K.A., Lebedev, Y.A., and Shakhatov, V.A., Plasma Phys. Rep., 2018, vol. 44, pp. 145–148. https://doi.org/10.1134/S1063780X18010014

    Article  CAS  Google Scholar 

  100. Averin, K.A., Bilera, I.V., Lebedev, Yu.A., Shakhatov, V.A., and Epstein, I.L., Plasma Process. Polym., 2019, vol. 16, no. 3, ID e1800198. https://doi.org/10.1002/PPAP.201800198

    Article  Google Scholar 

  101. Inshakov, S.I., Skvortsov, V.V., Rozhkov, A.F., Shakhatov, V.A., Inshakov, I.S., Uspensky, A.A., and Urusov, A.Y., High Temp., 2019, vol. 57, no. 6, pp. 798–807. https://doi.org/10.1134/s0018151x19060105 

    Article  CAS  Google Scholar 

  102. Lebedev, Yu.A. and Shakhatov, V.A., Eur. Phys. J.D., 2019, vol. 73, p. 167. https://doi.org/10.1140/epjd%2Fe2019-100099-2

    Article  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Ethics declarations

The authors declare that they have no conflict of

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 5–25, December, 2022 https://doi.org/10.31857/S0044461822010017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Shakhatov, V.A. Decomposition of Carbon Dioxide in Microwave Discharges (an Analytical Review). Russ J Appl Chem 95, 1–20 (2022). https://doi.org/10.1134/S1070427222010013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222010013

Keywords:

Navigation