Skip to main content
Log in

Cross-Linking in the Molecular Structure of Poly(vinyl butyral) and Properties Investigation

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The poly(vinyl butyral) (PVB) is a resin that is used in areas where strong adhesion, optical transparency, multi-surface adhesion, hardness and flexibility are required. The purpose of this research is to cross-link the bonds in this polymer by benzoyl peroxide as a type of peroxide. The oxygen-oxygen bond of benzoyl peroxide was fragmented to produce two radicals by heating, and a hydrogen atom was separated from the hydroxyl group, and subsequently, the reaction of oxygen radical to acetylated carbon in the vinyl butyral monomer and forming a cross-link had happened. The properties of the cross-linked polymer were investigated and compared with linear polymer. Chemical identification tests such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM) and differential scanning calorimeter (DSC), also mechanical tests including, Shore D Hardness test, impact and tensile test were applied. Through characterization and physical tests, it can be concluded that the cross-linked polymer had more resistance and can distribute the impact force better, endured more stress and also exhibited greater toughness, denser in color, more adhesion, and higher crystallinity than the linear polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Alva, G., Lin, Y., and Fang, G., Mater. Chem. Phys., 2018, vol. 205, pp. 401–415. https://doi.org/10.1016/j.matchemphys.2017.11.046

    Article  CAS  Google Scholar 

  2. Cho, H., Rinaldi, R.G., and Boyce, M.C., Soft Matter., 2013, vol. 9, no. 27, pp. 6319–6330. https://doi.org/10.1039/C3SM27125K

    Article  CAS  Google Scholar 

  3. Elzière, P., Fourton, P., Demassieux, Q., Chennevière, A., Dalle -Ferrier, C., Creton, C., Ciccotti, M., and Barthel, E., Macromolecules, 2019, vol. 52, no. 20, pp. 7821–7830. https://doi.org/10.1021/acs.macromol.9b01277

    Article  CAS  Google Scholar 

  4. Ipackchi, H., Rezadoust, A.M., Esfandeh, M., and Rezaei, M., Theor. Appl. Fract. Mech., 2020, vol. 105, p. 102406. https://doi.org/10.1016/j.tafmec.2019.102406

    Article  CAS  Google Scholar 

  5. Ambrosio, J.D., Sonego, M., Staffa, L.H., Chinelatto, M.A., and Costa, L. C., Compos. Part, B, Eng., 2019, vol. 175, p. 107118. https://doi.org/10.1016/j.compositesb.2019.107118

    Article  CAS  Google Scholar 

  6. Roy, A.S., Saravanan, S., Kishore, Ramamurthy, P.C., and Madras, G., Polym. Compos., 2014, vol. 35, no. 8, pp. 1636–1643. https://doi.org/10.1002/pc.22817

    Article  CAS  Google Scholar 

  7. Gupta, S., Seethamraju, S., Ramamurthy, P.C., and Madras, G., Ind. Eng. Chem. Res., 2013, vol. 52, no. 12, pp. 4383–4394. https://doi.org/10.1021/ie3022412

    Article  CAS  Google Scholar 

  8. Xu, Y., Luo, Y., Wang, F., Li, C., Wang, J., Zhu, H., and Guo, Y., ChemistrySelect, 2019, vol. 4, no. 29, pp. 8500–8507. https://doi.org/10.1002/slct.201901498

    Article  CAS  Google Scholar 

  9. Feller, R.L., Curran, M., Colaluca, V., Bogaard, J., and Bailie, C., Polym. Degrad. Stab., 2007, vol. 92, no. 5, pp. 920–931. https://doi.org/10.1016/j.polymdegradstab.2005.11.015

    Article  CAS  Google Scholar 

  10. Luckachan, G.E., and Mittal, V., Cellulose, 2015, vol. 22, no. 5, pp. 3275–3290. https://doi.org/10.1007/s10570-015-0711-2

    Article  CAS  Google Scholar 

  11. Jun, S., Choi, S. Bin, Han, C.J., Yu, Y.T., Lee, C.R., Ju, B.K., and Kim, J.W., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 4, pp. 4416–4424. https://doi.org/10.1021/acsami.8b20136

    Article  CAS  PubMed  Google Scholar 

  12. Negishi, H., Yamaki, T., and Endo, A., Microporous Mesoporous Mater., 2020, vol. 292, p. 109710. https://doi.org/10.1016/j.micromeso.2019.109710

    Article  CAS  Google Scholar 

  13. Bora, P.J., Azeem, I., Vinoy, K.J., Ramamurthy, P.C., and Madras, G., Compos. Part B Eng., 2018, vol. 132, pp. 188–196. https://doi.org/10.1016/j.compositesb.2017.09.014

    Article  CAS  Google Scholar 

  14. Oo, H.Z., Kostromina, N., Osipchik, V., Kravchenko, T., and Yakovleva, K., Int. J. Mater. Metall. Eng., 2019, vol. 13, no. 11, pp. 544–547.

    Google Scholar 

  15. Poudyal, H., Ahmed, I., and Chandy, A.J., Int. Polym. Process., 2019, vol. 34, no. 2, pp. 219–230. https://doi.org/10.3139/217.3680

    Article  CAS  Google Scholar 

  16. Na, H., Zhao, Y., Zhao, C., Zhao, C., and Yuan, X., Polym. Eng. Sci., 2008, vol. 48, no. 5, pp. 934–940. https://doi.org/10.1002/pen.21039

    Article  CAS  Google Scholar 

  17. Bai, Y., Zhang, J., Wen, D., Gong, P., and Chen, X., Compos. Sci. Technol., 2019, vol. 170, pp. 101–108. https://doi.org/10.1016/j.compscitech.2018.11.039

    Article  CAS  Google Scholar 

  18. ASTM International. ASTM d2240-15: standard test method for rubber property-durometer hardness, 2015.

  19. Thermoplastics Molding and Extrusion Materials, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, 2004.

  20. ASTM D256 -10, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics 10, 2018.

  21. Guinovart, T., Crespo, G.A., Rius, F.X., and Andrade, F.J., Anal. Chim. Acta, 2014, vol. 821, pp. 72–80. https://doi.org/10.1016/j.aca.2014.02.028

    Article  CAS  PubMed  Google Scholar 

  22. Liu, M., Turcheniuk, K., Fu, W., Yang, Y., Liu, M., and Yushin, G., Nano Energy , 2020, vol. 71, p. 104627. https://doi.org/10.1016/j.nanoen.2020.104627

    Article  CAS  Google Scholar 

  23. Shafiei, M., and Hajian, M., Iran. Polym. J., 2019, vol. 28, no. 8, pp. 659–672. https://doi.org/10.1007/s13726-019-00732-4

    Article  CAS  Google Scholar 

  24. Hajian, M., Reisi, M.R., Koohmareh, G.A., and Jam, A.R.Z., J. Polym. Res., 2012, vol. 19, no. 10, pp. 1–7. https://doi.org/10.1007/s10965-012-9966-6

    Article  CAS  Google Scholar 

  25. Rumyantsev, M., Rumyantsev, S., Kazantsev, O.A., Kamorina, S.I., Korablev, I.A., and Kalagaev, I.Y., J. Polym. Res., 2020, vol. 27, no. 3, pp. 1–11. https://doi.org/10.1007/s10965-020-2031-y

    Article  CAS  Google Scholar 

  26. Hojjati, M.R., Bassanajili, S., and Forootan, A., Iran. J. Chem. Chem. Eng., 2018, vol. 37, no. 1, pp. 175–183.

    CAS  Google Scholar 

  27. López-Córdoba, A., Castro, G.R., and Goyanes, S., Mater. Sci. Eng. C, 2016, vol. 69, pp. 726–732. https://doi.org/10.1016/j.msec.2016.07.058

    Article  CAS  Google Scholar 

  28. Aktürk, A., Erol Taygun, M., Karbancıoğlu Güler, F., Goller, G., and Küçükbayrak, S., Colloids Surfaces A Physicochem. Eng. Asp.,2019, vol. 562, pp. 255–262. https://doi.org/10.1016/j.colsurfa.2018.11.034

    Article  CAS  Google Scholar 

  29. Zheng, Y., Yao, G., Cheng, Q., Yu, S., Liu, M., and Gao, C., Desalination, 2013, vol. 328, pp. 42–50. https://doi.org/10.1016/j.desal.2013.08.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Shokri.

Ethics declarations

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdouss, M., Shokri, A. & Yaghoubi, S.H.S. Cross-Linking in the Molecular Structure of Poly(vinyl butyral) and Properties Investigation. Russ J Appl Chem 94, 1614–1623 (2021). https://doi.org/10.1134/S1070427221120077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221120077

Keywords:

Navigation