Skip to main content
Log in

Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In the second part of the review, the areas and results of using nanotechnology based on molecular layering in various branches of industry in the past 20 years are analyzed, and the prospects for further development and commercialization of the process are discussed. The achievements of researchers and engineers from Russia and other countries in the development of the molecular layering method and commercialization of solid-phase materials with improved operation characteristics are described. These materials include gate dielectrics and other kinds of coatings in electronics and adjacent fields; thin-film structures for components of solar panels, supercapacitors, and memristors; sorption-catalytic (in particular, membrane) materials; polymer and hybrid materials with controllable hydrophilic and electret properties and reduced combustibility; smart materials for sensor instrument engineering; core pigments and fillers; electroluminescent coatings and modified luminophores, ceramic composites, etc.. The most promising directions of the practical use of the molecular layering nanotechnology in the coming decade are substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The list of the suggested precursors can be found, e.g., in the following catalogs: MOCVD, CVD & ALD Precursors, Newburyport, MA, USA: Strem Chemicals, 2018; Chemical Products Catalogue, West Haven, CT, USA: City Chemical, 2020.

  2. Plasma & Materials Processing Group at Eindhoven University of Technology (Netherlands), ALD Database, 2021.https://www.atomiclimits.com/alddatabase(addressed June 2, 2021).

  3. Prognoz nauchno-tekhnologicheskogo razvitiya Rossiiskoi Federatsii na period do 2030 g. (Forecast of the Scientific and Technological Progress of the Russian Federation for the Period of up to 2030), Moscow: Minobrnauki Rossii, Dec. 2013, no. DMP8-5 (approved by the Russian Federation Government Jan. 3, 2013); Prognoz nauchno-tekhnologicheskogo razvitiya Rossii: 2030. Novye materialy i nanotekhnologii (Forecast of the Scientific and Technological Progress of Russia: 2030. New Materials and Nanotechnologies), Gokhberg, L.M. and Yaroslavtsev, A.B., Eds., Moscow: Minobrnauki Rossii, 2014.

REFERENCES

  1. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Appl. Chem., 2021, vol. 94, no. 8, pp. 1022–1037. https://doi.org/10.1134/S1070427221080024

    Article  CAS  Google Scholar 

  2. Chen, H., Lin, Q., Xu, Q., Yang, Y., Shao, Z., and Wang, Y., J. Membr. Sci., 2014, vol. 458, pp. 217–224. https://doi.org/10.1016/j.memsci.2014.02.004

    Article  CAS  Google Scholar 

  3. Mameli, A., Kuang, Y., Aghaee, M., Ande, C.K., Karasulu, B., Creatore, M., Mackus, A.J.M., Kessels, W.M.M., and Roozeboom, F., Chem. Mater., 2017, vol. 29, no. 3, pp. 921–925. https://doi.org/10.1021/acs.chemmater.6b04469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sprenger, J.K., Cavanagh, A.S., Sun, H., Wahl, K.J., Roshko, A., and George, S.M., Chem. Mater., 2016, vol. 28, no. 15, pp. 5282–5294. https://doi.org/10.1021/acs.chemmater.6b00676

    Article  CAS  Google Scholar 

  5. Sprenger, J.K., Sun, H., Cavanagh, A.S., Roshko, A., Blanchard, P.T., and George, S.M., J. Phys. Chem. C, 2018, vol. 122, no. 17, pp. 9455–9464. https://doi.org/10.1021/acs.jpcc.8b00796

    Article  CAS  Google Scholar 

  6. Mameli, A., Karasulu, B., Verheijen, M.A., Barcones, B., Macco, B., Mackus, A.J.M., Kessels, W.M.M.E., and Roozeboom, F., Chem. Mater., 2019, vol. 31, no. 4, pp. 1250–1257. https://doi.org/10.1021/acs.chemmater.8b03165

    Article  CAS  Google Scholar 

  7. Singh, J.A., Thissen, N.F.W., Kim, W.-H., Johnson, H., Kessels, W.M.M., Bol, A.A., Bent, S.F., and Mackus, A.J.M., Chem. Mater., 2018, vol. 30, no. 3, pp. 663–670. https://doi.org/10.1021/acs.chemmater.7b03818

    Article  CAS  PubMed  Google Scholar 

  8. Hirvikorpi, T., Vähä-Nissi, M., Harlin, A., Marles, J., Miikkulainen, V., and Karppinen, M., Appl. Surf. Sci., 2010, vol. 257, no. 3, pp. 736–740. https://doi.org/10.1016/j.apsusc.2010.07.051

    Article  CAS  Google Scholar 

  9. King, S.W., J. Vac. Sci. Technol. A, 2011, vol. 29, no. 4, ID 041501. https://doi.org/10.1116/1.3584790

    Article  CAS  Google Scholar 

  10. Potts, S.E. and Kessels, W.M.M., Coord. Chem. Rev., 2013, vol. 257, nos. 23–24, pp. 3254–3270. https://doi.org/10.1016/j.ccr.2013.06.015

    Article  CAS  Google Scholar 

  11. Suh, S., Ryu, S.W., Cho, S., Kim, J.R., Kim, S., Hwang, C.S., and Kim, H.J., J. Vac. Sci. Technol. A, 2016, vol. 34, no. 1, ID 01A136. https://doi.org/10.1116/1.4937734

    Article  CAS  Google Scholar 

  12. Lien, C., Konh, M., Chen, B., Teplyakov, A.V., and Zaera, F., J. Phys. Chem. Lett., 2018, vol. 9, no. 16, pp. 4602–4606. https://doi.org/10.1021/acs.jpclett.8b02125

    Article  CAS  PubMed  Google Scholar 

  13. Inventor’s Certificate SU 1359261 A1, Publ. 1987.

  14. Poodt, P., Lankhorst, A., Roozeboom, F., Spee, K., Maas, D., and Vermeer, A., Adv. Mater., 2010, vol. 22, no. 32, pp. 3564–3567. https://doi.org/10.1002/adma.201000766

    Article  CAS  PubMed  Google Scholar 

  15. Munoz-Rojas, D. and MacManus-Driscoll, J., Mater. Horiz., 2014, vol. 1, no. 3, pp. 314–320. https://doi.org/10.1039/C3MH00136A

    Article  CAS  Google Scholar 

  16. Maydannik, P.S., Kääriäinen, T.O., Lahtinen, K., Cameron, D.C., Söderlund, M., Soininen, P., Johansson, P., Kuusipalo, J., Moro, L., and Zeng, X., J. Vac. Sci. Technol. A, 2014, vol. 32, no. 5, ID 051603. https://doi.org/10.1116/1.4893428

    Article  CAS  Google Scholar 

  17. Sharma, K., Hall, R.A., and George, S.M., J. Vac. Sci. Technol. A, 2015, vol. 33, no. 1, ID 01A132. https://doi.org/10.1116/1.4902086

    Article  CAS  Google Scholar 

  18. Hoye, R.L., Muñoz-Rojas, D., Nelson, S.F., Illiberi, A., Poodt, P., Roozeboom, F., and MacManus-Driscoll, J.L., APL Mater., 2015, vol. 3, no. 4, ID 040701. https://doi.org/10.1063/1.4916525

    Article  CAS  Google Scholar 

  19. Dickey, E. and Barrow, W.A., J. Vac. Sci. Technol. A, 2012, vol. 30, no. 2, ID 021502. https://doi.org/10.1116/1.3678486

    Article  CAS  Google Scholar 

  20. Hirvikorpi, T., Laine, R., Vähä-Nissi, M., Kilpi, V., Salo, E., Li, W.-M., Lindfors, S., Vartiainen, J., Kenttä, E., Nikkola, J., Harlin, A., and Kostamo, J., Thin Solid Films, 2014, vol. 550, pp. 164–169. https://doi.org/10.1016/j.tsf.2013.10.148

    Article  CAS  Google Scholar 

  21. Maydannik, P.S., Kääriäinen, T.O., and Cameron, D.C., Chem. Eng. J., 2011, vol. 171, no. 1, pp. 345–349. https://doi.org/10.1016/j.cej.2011.03.097

    Article  CAS  Google Scholar 

  22. Poodt, P., Knaapen, R., Illiberi, A., Roozeboom, F., and van Asten, A., J. Vac. Sci. Technol. A, 2012, vol. 30, no. 1, ID 01A142. https://doi.org/10.1116/1.3667113

    Article  CAS  Google Scholar 

  23. Malygin, A.A., Ross. Khim. Zh., 2013, vol. LVII, no. 6, pp. 7–20.

    Google Scholar 

  24. McCormick, J.A., Cloutier, B.L., Weimer, A.W., and George, S.M., J. Vac. Sci. Technol. A, 2007, vol. 25, no. 1, pp. 67–74. https://doi.org/10.1116/1.2393299

    Article  CAS  Google Scholar 

  25. Liang, X., Hakim, L.F., Zhan, G.-D., McCormick, J.A., George, S.M., Weimer, A.W., Spencer, J.A., II, Buechler, K.J., Blackson, J., Wood, C.J., and Dorgan, J.R., J. Am. Ceram. Soc., 2007, vol. 90, no. 1, pp. 57–63. https://doi.org/10.1111/j.1551-2916.2006.01359.x

    Article  CAS  Google Scholar 

  26. Adhikari, S., Selvaraj, S., and Kim, D.-H., Adv. Mater. Interfaces, 2018, vol. 5, no. 16, ID 1800581. https://doi.org/10.1002/admi.201800581

    Article  Google Scholar 

  27. Heil, S.B.S., Van Hemmen, J.L., Hodson, C.J., Singh, N., Klootwijk, J.H., Roozeboom, F., Van de Sanden, M.C.M., and Kessels, W.M.M., J. Vac. Sci. Technol. A, 2007, vol. 25, no. 5, pp. 1357–1366. https://doi.org/10.1116/1.2753846

    Article  CAS  Google Scholar 

  28. Knoops, H.C.M., Faraz, T., Arts, K., and Kessels, W.M. M., J. Vac. Sci. Technol. A, 2019, vol. 37, no. 3, ID 030902. https://doi.org/10.1116/1.5088582

    Article  CAS  Google Scholar 

  29. Sammelselg, V., Tarre, A., Lu, J., Aarik, J., Niilisk, A., Uustare, T., Netšipailo, I., Rammula, R., Pärna, R., and Rosental, A., Surf. Coat. Technol., 2010, vol. 204, nos. 12–13, pp. 2015–2018. https://doi.org/10.1016/j.surfcoat.2009.11.039

    Article  CAS  Google Scholar 

  30. Huang, J., Lucero, A.T., Cheng, L., Hwang, H.J., Ha, M.-W., and Kim, J., Appl. Phys. Lett., 2015, vol. 106, no. 12, ID 123101. https://doi.org/10.1063/1.4916510

    Article  CAS  Google Scholar 

  31. Buchkov, K., Galluzzi, A., Blagoev, B., Paskaleva, A., Terziyska, P., Stanchev, T., Mehandzhiev, V., Tzvetkov, P., Kovacheva, D., Avramova, I., Nazarova, E., and Polichetti, M., J. Phys.: Conf. Ser., 2021, vol. 1762, no. 1, ID 012041. https://doi.org/10.1088/1742-6596/1762/1/012041

    Article  CAS  Google Scholar 

  32. Marin, E., Guzman, L., Lanzutti, A., Ensinger, W., and Fedrizzi, L., Thin Solid Films, 2012, vol. 522, pp. 283–288. https://doi.org/10.1016/j.tsf.2012.08.023

    Article  CAS  Google Scholar 

  33. Ahn, C.H., Kim, S.H., Yun, M.G., and Cho, H.K., Appl. Phys. Lett., 2014, vol. 105, no. 22, ID 223513. https://doi.org/10.1063/1.4901732

    Article  CAS  Google Scholar 

  34. Jogiaas, T., Zabels, R., Tarre, A., and Tamm, A., Mater. Chem. Phys., 2020, vol. 240, ID 122270. https://doi.org/10.1016/j.matchemphys.2019.122270

    Article  CAS  Google Scholar 

  35. Park, H., Shin, S., Choi, H., Lee, N., Choi, Y., Kim, K., and Jeon, H., J. Vac. Sci. Technol. A, 2020, vol. 38, no. 6, ID 062403. https://doi.org/10.1116/6.0000485

    Article  CAS  Google Scholar 

  36. Terai, Y., Kuroda, S., and Takita, K., J. Cryst. Growth, 2000, vols. 214–215, pp. 178–182. https://doi.org/10.1016/S0022-0248(00)00067-1

    Article  Google Scholar 

  37. Ihanus, J., Lambers, E., Holloway, P.H., Ritala, M., and Leskelä, M., J. Cryst. Growth, 2004, vol. 260, nos. 3–4, pp. 440–446. https://doi.org/10.1016/j.jcrysgro.2003.08.046

    Article  CAS  Google Scholar 

  38. Bakke, J.R., Tanskanen, J.T., Jung, H.J., Sinclair, R., and Bent, S.F., J. Mater. Chem., 2011, vol. 21, no. 3, pp. 743–751. https://doi.org/10.1039/C0JM02786C

    Article  CAS  Google Scholar 

  39. Yun, S.J., Kim, Y.S., and Park, S.-H.K., Appl. Phys. Lett., 2001, vol. 78, no. 6, pp. 721–723. https://doi.org/10.1063/1.1343478

    Article  CAS  Google Scholar 

  40. Hikavyy, A., Neyts, K., Stuyven, G., Poelman, D., and De Visschere, P., J. Soc. Inf. Disp., 2002, vol. 10, no. 3, pp. 255–258. https://doi.org/10.1889/1.1827876

    Article  Google Scholar 

  41. Hoang, J., Van, T.T., Sawkar-Mathur, M., Hoex, B., Van de Sanden, M.C.M., Kessels, W.M.M., Ostroumov, R., Wang, K.L., Bargar, J.R., and Chang, J.P., J. Appl. Phys., 2007, vol. 101, no. 12, ID 123116. https://doi.org/10.1063/1.2748629

    Article  CAS  Google Scholar 

  42. Hendriks, W.A., Chang, L., Van Emmerik, C.I., Mu, J., De Goede, M., Dijkstra, M., and Garcia-Blanco, S.M., Adv. Phys.: X, 2021, vol. 6, no. 1, ID 1833753. https://doi.org/10.1080/23746149.2020.1833753

    Article  CAS  Google Scholar 

  43. Dasgupta, N.P., Meng, X., Elam, J.W., and Martinson, A.B., Acc. Chem. Res., 2015, vol. 48, no. 2, pp. 341–348. https://doi.org/10.1021/ar500360d

    Article  CAS  PubMed  Google Scholar 

  44. Park, N.-G., Mater. Today, 2015, vol. 18, no. 2, pp. 65–72. https://doi.org/10.1016/j.mattod.2014.07.007

    Article  CAS  Google Scholar 

  45. Perevalov, T.V., Gritsenko, V.A., Gutakovskii, A.K., and Prosvirin, I.P., JETP Lett., 2019, vol. 109, no. 2, pp. 116–120. https://doi.org/10.1134/S0021364019020115 

    Article  CAS  Google Scholar 

  46. Uusi-Esko, K., Rautama, E.L., Laitinen, M., Sajavaara, T., and Karppinen, M., Chem. Mater., 2010, vol. 22, no. 23, pp. 6297–6300. https://doi.org/10.1021/cm102003y

    Article  CAS  Google Scholar 

  47. Zhang, Y., Ren, W., Niu, G., Li, C., Wang, C., Jiang, Z.-D., Liu, M., and Ye, Z.-G., Thin Solid Films, 2020, vol. 709, ID 138206. https://doi.org/10.1016/j.tsf.2020.138206

    Article  CAS  Google Scholar 

  48. Tamm, A., Tarre, A., Verchenko, V., Seemen, H., and Stern, R., Crystals, 2020, vol. 10, no. 8, ID 650. https://doi.org/10.3390/cryst10080650

    Article  CAS  Google Scholar 

  49. Coumou, P.C.J.J., Zuiddam, M.R., Driessen, E.F.C., de Visser, P.J., Baselmans, J.J.A., and Klapwijk, T.M., IEEE Trans. Appl. Supercond., 2012, vol. 23, no. 3, ID 7500404. https://doi.org/10.1109/TASC.2012.2236603

    Article  CAS  Google Scholar 

  50. Yoshizawa, S., Minamitani, E., Vijayaraghavan, S., Mishra, P., Takagi, Y., Yokoyama, T., Oba, H., Nitta, J., Sakamoto, K., Watanabe, S., Nakayama, T., and Uchihashi, T., Nano Lett., 2017, vol. 17, no. 4, pp. 2287–2293. https://doi.org/10.1021/acs.nanolett.6b05010

    Article  CAS  PubMed  Google Scholar 

  51. Proslier, T., Klug, J., Becker, N.C., Elam, J.W., and Pellin, M., ECS Trans., 2011, vol. 41, no. 2, pp. 237–245. https://doi.org/10.1149/1.3633673

    Article  CAS  Google Scholar 

  52. Mackus, A.J., Schneider, J.R., MacIsaac, C., Baker, J.G., and Bent, S.F., Chem. Mater., 2018, vol. 31, no. 4, pp. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878

    Article  CAS  Google Scholar 

  53. Zhou, H. and Bent, S.F., J. Vac. Sci. Technol. A, 2013, vol. 31, no. 4, ID 040801. https://doi.org/10.1116/1.4804609

    Article  CAS  Google Scholar 

  54. Cameron, D.C. and Ivanova, T.V., ECS Trans., 2013, vol. 58, no. 10, pp. 263–275. https://doi.org/10.1149/05810.0263ecst

    Article  CAS  Google Scholar 

  55. Sundberg, P. and Karppinen, M., Beilstein J. Nanotechnol., 2014, vol. 5, no. 1, pp. 1104–1136. https://doi.org/10.3762/bjnano.5.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meng, X., J. Mater. Chem. A, 2017, vol. 5, no. 35, pp. 18326–18378. https://doi.org/10.1039/C7TA04449F

    Article  CAS  Google Scholar 

  57. Kanarik, K.J., Lill, T., Hudson, E.A., Sriraman, S., Tan, S., Marks, J., Vahedi, V., and Gottscho, R.A., J. Vac. Sci. Technol. A, 2015, vol. 33, no. 2, ID 020802. https://doi.org/10.1116/1.4913379

    Article  CAS  Google Scholar 

  58. Lee, Y., DuMont, J.W., and George, S.M., ECS Trans., 2015, vol. 69, no. 7, pp. 233–241. https://doi.org/10.1149/06907.0233ecst

    Article  CAS  Google Scholar 

  59. George, S.M., Acc. Chem. Res., 2020, vol. 53, no. 6, pp. 1151–1160. https://doi.org/10.1021/acs.accounts.0c00084

    Article  CAS  PubMed  Google Scholar 

  60. Fischer, A., Routzahn, A., George, S.M., and Lill, T., J. Vac. Sci. Technol. A, 2021, vol. 39, no. 3, ID 030801. https://doi.org/10.1116/6.0000894

    Article  CAS  Google Scholar 

  61. Tolstoi, V.P., Russ. Chem. Rev., 1993, vol. 62, no. 3, pp. 237–242. https://doi.org/10.1070/RC1993v062n03ABEH000015 

    Article  Google Scholar 

  62. Tolstoy, V.P., Russ. Chem. Rev., 2006, vol. 75, no. 2, pp. 161–175. https://doi.org/10.1070/RC2006v075n02ABEH001197 

    Article  CAS  Google Scholar 

  63. Tolstoy, V.P., Osnovy nanotekhnologii ionnogo naslaivaniya (Principles of the Successive Ionic Layer Deposition Nanotechnology), St. Petersburg: ATOM, 2020.

    Google Scholar 

  64. Kol’tsov, S.I., Sostav i khimicheskoe stroenie tverdykh veshchestv (Composition and Chemical Structure of Solids), Leningrad: Leningr. Tekhnol. Inst. im. Lensoveta, 1987.

    Google Scholar 

  65. Kol’tsov, S.I., Reaktsii molekulyarnogo naslaivaniya (Molecular Layer Deposition Reactions), St. Petersburg: Sankt-Peterb. Tekhnol. Inst., 1992.

    Google Scholar 

  66. Agarwal, A. and Kushner, M.J., J. Vac. Sci. Technol. A, 2009, vol. 27, no. 1, pp. 37–50. https://doi.org/10.1116/1.3021361

    Article  CAS  Google Scholar 

  67. Faraz, T., Roozeboom, F., Knoops, H.C.M., and Kessels, W.M.M., ECS J. Solid State Sci. Technol., 2015, vol. 4, no. 6, pp. N5023–N5032. https://doi.org/10.1149/2.0051506jss

    Article  CAS  Google Scholar 

  68. Kanarik, K.J., Tan, S., Yang, W., Kim, T., Lill, T., Kabansky, A., Hudson, E.A., Ohba, T., Nojiri, K., Yu, J., Wise, R., Berry, I.L., Pan, Y., Marks, J., and Gottscho, R.A., J. Vac. Sci. Technol. A, 2017, vol. 35, no. 5, ID 05C302. https://doi.org/10.1116/1.4979019

    Article  CAS  Google Scholar 

  69. Kanarik, K.J., Tan, S., and Gottscho, R.A., J. Phys. Chem. Lett., 2018, vol. 9, no. 16, pp. 4814–4821. https://doi.org/10.1021/acs.jpclett.8b00997

    Article  CAS  PubMed  Google Scholar 

  70. Lu, W., Lee, Y., Murdzek, J., Gertsch, J., Vardi, A., Kong, L., George, S.M., and del Alamo, J.A., in 2018 IEEE Int. Electron Devices Meet. (IEDM), 2018, pp. 39.1.1–39.1.4. https://doi.org/10.1109/IEDM.2018.8614536

    Article  Google Scholar 

  71. Song, S.K., Saare, H., and Parsons, G.N., Chem. Mater., 2019, vol. 31, no. 13, pp. 4793–4804. https://doi.org/10.1021/acs.chemmater.9b01143

    Article  CAS  Google Scholar 

  72. Parsons, G.N. and Clark, R.D., Chem. Mater., 2020, vol. 32, no. 12, pp. 4920–4953. https://doi.org/10.1021/acs.chemmater.0c00722

    Article  CAS  Google Scholar 

  73. George, S.M., Yoon, B., and Dameron, A.A., Acc. Chem. Res., 2009, vol. 42, no. 4, pp. 498–508. https://doi.org/10.1021/ar800105q

    Article  CAS  PubMed  Google Scholar 

  74. Yoon, B., Seghete, D., Cavanagh, A.S., and George, S.M., Chem. Mater., 2009, vol. 21, no. 22, pp. 5365–5374. https://doi.org/10.1021/cm9013267

    Article  CAS  Google Scholar 

  75. Ivanova, T.V., Maydannik, P.S., and Cameron, D.C., J. Vac. Sci. Technol. A, 2012, vol. 30, no. 1, ID 01A121. https://doi.org/10.1116/1.3662846

    Article  CAS  Google Scholar 

  76. . Lee, B.H., Yoon, B., Abdulagatov, A.I., Hall, R.A., and George, S.M., Adv. Funct. Mater., 2013, vol. 23, no. 5, pp. 532–546. https://doi.org/10.1002/adfm.201200370

    Article  CAS  Google Scholar 

  77. Ban, C. and George, S.M., Adv. Mater. Interfaces, 2016, vol. 3, no. 21, ID 1600762. https://doi.org/10.1002/admi.201600762

    Article  CAS  Google Scholar 

  78. Yang, Z., Zhang, L., Liu, J., Adair, K., Zhao, F., Sun, Y., Wu, T., Bi, X., Amine, K., Lu, J., and Sun, X., Chem. Soc. Rev., 2021, vol. 50, no. 6, pp. 3889–3956. https://doi.org/10.1039/D0CS00156B

    Article  Google Scholar 

  79. Putkonen, M. and Niinistö, L., in Precursor Chemistry of Advanced Materials. CVD, ALD and Nanoparticles, Fischer, R.A., Ed., Berlin: Springer, 2005, pp. 125–145. https://doi.org/10.1007/b136145

    Book  Google Scholar 

  80. Knisley, T.J., Kalutarage, L.C., and Winter, C.H., Coord. Chem. Rev., 2013, vol. 257, nos. 23–24, pp. 3222–3231. https://doi.org/10.1016/j.ccr.2013.03.019

    Article  CAS  Google Scholar 

  81. Gordon, R.G., in Atomic Layer Deposition for Semiconductors, Hwang, C.S., Ed., Boston, MA: Springer, 2014, pp. 15–46. https://doi.org/10.1007/978-1-4614-8054-9_2

    Book  Google Scholar 

  82. Parsons, G.N., J. Vac. Sci. Technol. A, 2019, vol. 37, no. 2, ID 020911. https://doi.org/10.1116/1.5054285

    Article  CAS  Google Scholar 

  83. Lu, H.L., Chen, W., Ding, S.J., Xu, M., Zhang, D.W., and Wang, L.K., J. Phys.: Condens. Matter, 2006, vol. 18, no. 26, pp. 5937–5944. https://doi.org/10.1088/0953-8984/18/26/013

    Article  CAS  Google Scholar 

  84. Lee, W., Dasgupta, N.P., Trejo, O., Lee, J.R., Hwang, J., Usui, T., and Prinz, F.B., Langmuir, 2010, vol. 26, no. 9, pp. 6845–6852. https://doi.org/10.1021/la904122e

    Article  CAS  PubMed  Google Scholar 

  85. Elliott, S.D., in Atomic Layer Deposition for Semiconductors, Hwang, C.S., Ed., Boston, MA: Springer, 2014, pp. 47–69. https://doi.org/10.1007/978-1-4614-8054-9_3

    Article  Google Scholar 

  86. Dey, G. and Elliott, S. D., J. Phys. Chem. C, 2015, vol. 119, no. 11, pp. 5914–5927. https://doi.org/10.1021/jp509334u

    Article  CAS  Google Scholar 

  87. Mustard, T.J.L., Kwak, H.S., Goldberg, A., Gavartin, J., Morisato, T., Yoshidome, D., and Halls, M.D., J. Korean Ceram. Soc., 2016, vol. 53, no. 3, pp. 317–324. https://doi.org/10.4191/kcers.2016.53.3.317

    Article  CAS  Google Scholar 

  88. Drozdov, E.O., Dubrovenskii, S.D., and Malygin, A.A., Russ. J. Gen. Chem., 2016, vol. 86, no. 10, pp. 2263–2272. https://doi.org/10.1134/S1070363216100042 

    Article  CAS  Google Scholar 

  89. Elliott, S.D., Dey, G., Maimaiti, Y., Ablat, H., Filatova, E.A., and Fomengia, G.N., Adv. Mater., 2016, vol. 28, no. 27, pp. 5367–5380. https://doi.org/10.1002/adma.201504043

    Article  CAS  PubMed  Google Scholar 

  90. Ngoc Van, T.T., Ansari, A.S., and Shong, B., J. Vac. Sci. Technol. A, 2019, vol. 37, no. 2, ID 020909. https://doi.org/10.1116/1.5079247

    Article  CAS  Google Scholar 

  91. Cremers, V., Puurunen, R.L., and Dendooven, J., Appl. Phys. Rev., 2019, vol. 6, no. 2, ID 021302. https://doi.org/10.1063/1.5060967

    Article  CAS  Google Scholar 

  92. Drozdov, E.O., Dubrovenskii, S.D., and Malygin, A.A., Russ. J. Gen. Chem., 2020, vol. 90, no. 5, pp. 880–888. https://doi.org/10.1134/S1070363220050217 

    Article  CAS  Google Scholar 

  93. Park, J., Yu, N.K., Jang, D., Jung, E., Noh, H., Moon, J., Kil, D., and Shong, B., Coatings, 2020, vol. 10, no. 8, ID 712. https://doi.org/10.3390/coatings10080712

    Article  CAS  Google Scholar 

  94. Robertson, J., Rep. Prog. Phys., 2005, vol. 69, no. 2, pp. 327–396. https://doi.org/10.1088/0034-4885/69/2/r02

    Article  Google Scholar 

  95. Kittl, J.A., Opsomer, K., Popovici, M., Menou, N., Kaczer, B., Wang, X.P., Adelmann, C., Pawlak, M.A., Tomida, K., Rothschild, A., and Govoreanu, B., Microelectron. Eng., 2009, vol. 86, nos. 7–9, pp. 1789–1795. https://doi.org/10.1016/j.mee.2009.03.045

    Article  CAS  Google Scholar 

  96. Lamperti, A., Lamagna, L., Congedo, G., and Spiga, S., J. Electrochem. Soc., 2011, vol. 158, no. 10, pp. G221–G226. https://doi.org/10.1149/1.3625254

    Article  CAS  Google Scholar 

  97. Ye, G., Wang, H., Arulkumaran, S., Ng, G.I., Hofstetter, R., Li, Y., Anand, M.J., Ang, K.S., Maung, Y.K.T., and Foo, S.C., Appl. Phys. Lett., 2013, vol. 103, no. 14, ID 142109. https://doi.org/10.1063/1.4824445

    Article  CAS  Google Scholar 

  98. Anderson, T.J., Wheeler, V.D., Shahin, D.I., Tadjer, M.J., Koehler, A.D., Hobart, K.D., Christou, A., Kub, F. J., and Eddy, C.R.Jr., Appl. Phys. Express, 2016, vol. 9, no. 7, ID 071003. https://doi.org/10.7567/APEX.9.071003

    Article  CAS  Google Scholar 

  99. Wang, X., Ghosh, S.K., Afshar-Mohajer, M., Zhou, H., Liu, Y., Han, X., Cai, J., Zou, M., and Meng, X., J. Mater. Res., 2020, vol. 35, no. 7, pp. 804–812. https://doi.org/10.1557/jmr.2019.338

    Article  CAS  Google Scholar 

  100. Cheng, Y.L., Hsieh, C.Y., and Chang, Y.L., Thin Solid Films, 2013, vol. 528, pp. 77–81. https://doi.org/10.1016/j.tsf.2012.09.089

    Article  CAS  Google Scholar 

  101. Yota, J., Shen, H., and Ramanathan, R., J. Vac. Sci. Technol. A, 2013, vol. 31, no. 1, ID 01A134. https://doi.org/10.1116/1.4769207

    Article  CAS  Google Scholar 

  102. Cheng, Y.L., Kao, K.C., Huang, C.J., Chen, G.S., and Fang, J.S., Appl. Surf. Sci., 2015, vol. 354, part A, pp. 115–119. https://doi.org/10.1016/j.apsusc.2015.02.070

    Article  CAS  Google Scholar 

  103. Corrêa, S.A., Brizzi, S., and Schmeisser, D., J. Vac. Sci. Technol. A, 2016, vol. 34, no. 1, ID 01A117. https://doi.org/10.1116/1.4935338

    Article  CAS  Google Scholar 

  104. Rahman, M., Kim, J.G., Kim, D.H., and Kim, T.W., Micromachines, 2019, vol. 10, no. 6, ID 361. https://doi.org/10.3390/mi10060361

    Article  PubMed Central  Google Scholar 

  105. Choi, S.N., Moon, S.E., and Yoon, S.M., Ceram. Int., 2019, vol. 45, no. 17, pp. 22642–22648. https://doi.org/10.1016/j.ceramint.2019.07.297

    Article  CAS  Google Scholar 

  106. Nigro, R.L., Schilirò, E., Mannino, G., Di Franco, S., and Roccaforte, F., J. Cryst. Growth, 2020, vol. 539, ID 125624. https://doi.org/10.1016/j.jcrysgro.2020.125624

    Article  CAS  Google Scholar 

  107. Chen, P.Y., He, Z.Y., Cha, M.Y., Liu, H., Zhu, H., Chen, L., Sun, Q.Q., Ding, S.J., and Zhang, D.W., Phys. Status Solidi A, 2021, vol. 218, no. 9, ID 2000635. https://doi.org/10.1002/pssa.202000635

    Article  CAS  Google Scholar 

  108. Egorov, K.V., Lebedinskii, Yu.Yu., Markeev, A.M., and Orlov, O.M., Appl. Surf. Sci., 2015, vol. 356, pp. 454–459. https://doi.org/10.1016/j.apsusc.2015.07.217

    Article  CAS  Google Scholar 

  109. Egorov, K.V., Kuz’michev, D.S., Lebedinskii, Yu.Yu., and Markeev, A.M., Russ. J. Appl. Chem., 2016, vol. 89, no. 11, pp. 1825–1830. https://doi.org/10.1134/S1070427216110136 

    Article  CAS  Google Scholar 

  110. Vallat, R., Gassilloud, R., Eychenne, B., and Vallée, C., J. Vac. Sci. Technol. A, 2017, vol. 35, no. 1, ID 01B104. https://doi.org/10.1116/1.4965966

    Article  CAS  Google Scholar 

  111. Chernikova, A.G., Kozodaev, M.G., Markeev, A.M., Matveyev, Y.A., Negrov, D.V., and Orlov, O.M., Microelectron. Eng., 2015, vol. 147, pp. 15–18. https://doi.org/10.1016/j.mee.2015.04.024

    Article  CAS  Google Scholar 

  112. Markeev, A., Chouprik, A., Egorov, K., Lebedinskii, Yu., Zenkevich, A., and Orlov, O., Microelectron. Eng., 2013, vol. 109, pp. 342–345. https://doi.org/10.1016/j.mee.2013.03.084

    Article  CAS  Google Scholar 

  113. Wang, C., Xu, M., Gu, J., Zhang, D.W., and Peide, D.Y., Electrochem. Solid-State Lett., 2011, vol. 15, no. 3, pp. H51–H54. https://doi.org/10.1149/2.001203esl

    Article  CAS  Google Scholar 

  114. Yoo, Y.W., Jeon, W., Lee, W., An, C.H., Kim, S.K., and Hwang, C.S., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 24, pp. 22474–22482. https://doi.org/10.1021/am506525s

    Article  CAS  PubMed  Google Scholar 

  115. Liu, L., Hou, Y., Zhang, W., Han, D., and Wang, Y., Adv. Condens. Matter Phys., 2015, vol. 2015, ID 714097. https://doi.org/10.1155/2015/714097

    Article  Google Scholar 

  116. Lu, B., Lv, H., Zhang, Y., Zhang, Y., and Liu, C., Superlattices Microstruct., 2016, vol. 99, pp. 54–57. https://doi.org/10.1016/j.spmi.2016.07.032

    Article  CAS  Google Scholar 

  117. Lamagna, L., Molle, A., Wiemer, C., Spiga, S., Grazianetti, C., Congedo, G., and Fanciulli, M., J. Electrochem. Soc., 2011, vol. 159, no. 3, pp. H220–H224. https://doi.org/10.1149/2.034203jes

    Article  CAS  Google Scholar 

  118. Lee, S., Choi, H., Shin, S., Park, J., Ham, G., Jung, H., and Jeon, H., Curr. Appl. Phys., 2014, vol. 14, no. 4, pp. 552–557. https://doi.org/10.1016/j.cap.2013.11.053

    Article  Google Scholar 

  119. Kukli, K., Kemell, M., Castán, H., Dueñas, S., Seemen, H., Rähn, M., Link, J., Stern, R., Heikkilä, M.J., Ritala, M., and Leskelä, M., ECS J. Solid State Sci. Technol., 2018, vol. 7, no. 5, pp. P287–P294. https://doi.org/10.1149/2.0021806jss

    Article  CAS  Google Scholar 

  120. Alekhin, A.P., Chouprik, A.A., Gudkova, S.A., Markeev, A.M., Lebedinskii, Yu.Yu., Matveyev, Yu.A., and Zenkevich, A.V., J. Vac. Sci. Technol. B, 2011, vol. 29, no. 1, ID 01A302. https://doi.org/10.1116/1.3533763

    Article  CAS  Google Scholar 

  121. Cisneros-Morales, M.C. and Aita, C.R., J. Appl. Phys., 2011, vol. 109, no. 12, ID 123523. https://doi.org/10.1063/1.3597321

    Article  CAS  Google Scholar 

  122. Pokhriyal, S. and Biswas, S., Mater. Today: Proc., 2016, vol. 3, no. 6, pp. 1311–1319. https://doi.org/10.1016/j.matpr.2016.04.009

    Article  Google Scholar 

  123. Hernández-Arriaga, H., López-Luna, E., Martínez-Guerra, E., Turrubiartes, M.M., Rodríguez, A.G., and Vidal, M.A., J. Appl. Phys., 2017, vol. 121, no. 6, ID 064302. https://doi.org/10.1063/1.4975676

    Article  CAS  Google Scholar 

  124. Jõgi, I., Kukli, K., Ritala, M., Leskelä, M., Aarik, J., Aidla, A., and Lu, J., Microelectron. Eng., 2010, vol. 87, no. 2, pp. 144–149. https://doi.org/10.1016/j.mee.2009.06.032

    Article  CAS  Google Scholar 

  125. Kukli, K., Kemell, M., Vehkamäki, M., Heikkilä, M.J., Mizohata, K., Kalam, K., Ritala, M., Leskelä, M., Kundrata, I., and Fröhlich, K., AIP Adv., 2017, vol. 7, no. 2, ID 025001. https://doi.org/10.1063/1.4975928

    Article  CAS  Google Scholar 

  126. Alekhin, A.P., Chouprik, A.A., Grigal, I.P., Gudkova, S.A., Lebedinskii, Yu.Yu., Markeev, A.M., and Zaitsev, S.A., Thin Solid Films, 2012, vol. 520, no. 14, pp. 4547–4550. https://doi.org/10.1016/j.tsf.2011.10.186

    Article  CAS  Google Scholar 

  127. Vasil’ev, V.Yu., Nanoindustriya, 2019, vol. 12, nos. 3–4 (90), pp. 194–205. https://doi.org/10.22184/1993-8578.2019.12.3-4.194.204

    Article  Google Scholar 

  128. Jeon, W., Chung, H.S., Joo, D., and Kang, S.W., Electrochem. Solid-State Lett., 2007, vol. 11, no. 2, pp. H19–H21. https://doi.org/10.1149/1.2813881

    Article  CAS  Google Scholar 

  129. Niinistö, J., Kukli, K., Heikkilä, M., Ritala, M., and Leskelä, M., Adv. Eng. Mater., 2009, vol. 11, no. 4, pp. 223–234. https://doi.org/10.1002/adem.200800316

    Article  CAS  Google Scholar 

  130. Park, B.E., Oh, I.K., Mahata, C., Lee, C.W., Thompson, D., Maeng, W.J., and Kim, H., J. Alloys Compd., 2017, vol. 722, pp. 307–312. https://doi.org/10.1016/j.jallcom.2017.06.036

    Article  CAS  Google Scholar 

  131. Lee, K., Jang, W., Kim, H., Lim, H., Kim, B., Seo, H., and Jeon, H., Thin Solid Films, 2018, vol. 657, pp. 1–7. https://doi.org/10.1016/j.tsf.2018.04.033

    Article  CAS  Google Scholar 

  132. Lau, W.S., Abstracts of Papers, 2019 China Semicond. Technol. Int. Conf. (CSTIC), 2019, pp. 1–3. https://doi.org/10.1109/CSTIC.2019.8755629

  133. Lau, W.S., Abstracts of Papers, 2020 China Semicond. Technol. Int. Conf. (CSTIC), 2020, pp. 1–3. https://doi.org/10.1109/CSTIC49141.2020.9282429

  134. Jeon, W., J. Mater. Res., 2020, vol. 35, no. 7, pp. 775–794. https://doi.org/10.1557/jmr.2019.335

    Article  CAS  Google Scholar 

  135. Galperin, V.A., Gromov, D.G., Kitsyuk, E.P., Markeev, A.M., Lebedev, E.A., Chernikova, A.G., and Dubkov, S.V., Nano- Mikrosist. Tekh., 2014, no. 6 (167), pp. 33–36.

    Google Scholar 

  136. Patent RU 2521083 C2, Publ. 2014.

  137. Patent RU 2528010 C2, Publ. 2014.

  138. Patent RU 2572816 C2, Publ. 2016.

  139. Zhong, Y., Xia, X., Zhan, J., Wang, Y., Wang, X., and Tu, J., J. Mater. Chem. A, 2016, vol. 4, no. 48, pp. 18717–18722. https://doi.org/10.1039/C6TA08179G

    Article  CAS  Google Scholar 

  140. Du, K., Lu, P., Liu, G., Chen, X., and Wang, K., Abstracts of Papers, 19th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017, pp. 710–713. https://doi.org/10.1109/TRANSDUCERS.2017.7994147

  141. Majumdar, D., Mandal, M., and Bhattacharya, S.K., ChemElectroChem, 2019, vol. 6, no. 6, pp. 1623–1648. https://doi.org/10.1002/celc.201801761

    Article  CAS  Google Scholar 

  142. Abdulagatov, A.I., Ashurbekova, K.N., Ashurbekova, K.N., Amashaev, R.R., Rabadanov, M.K., and Abdulagatov, I.M., Russ. J. Appl. Chem., 2018, vol. 91, no. 3, pp. 347–359. https://doi.org/10.1134/S1070427218030011 

    Article  CAS  Google Scholar 

  143. Ashurbekova, K., Ashurbekova, K., Saric, I., Gobbi, M., Modin, E., Chuvilin, A., Petravic, M., Abdulagatov, I., and Knez, M., Chem. Mater., 2021, vol. 33, no. 3, pp. 1022–1030. https://doi.org/10.1021/acs.chemmater.0c04408

    Article  CAS  Google Scholar 

  144. Ashurbekova, K., Ashurbekova, K., Saric, I., Modin, E., Petravic, M., Abdulagatov, I., Abdulagatov, A., and Knez, M., Chem. Commun., 2021, vol. 57, no. 17, pp. 2160–2163. https://doi.org/10.1039/D0CC07858A

    Article  CAS  Google Scholar 

  145. Oh, I.K., Kim, M.K., Lee, J.S., Lee, C.W., Lansalot-Matras, C., Noh, W., Park, J., Noori, A., Thompson, D., Chu, S., and Maeng, W.J., Appl. Surf. Sci., 2013, vol. 287, pp. 349–354. https://doi.org/10.1016/j.apsusc.2013.09.153

    Article  CAS  Google Scholar 

  146. Kozodaev, M.G., Chernikova, A.G., Korostylev, E.V., Park, M.H., Schroeder, U., Hwang, C.S., and Markeev, A.M., Appl. Phys. Lett., 2017, vol. 111, no. 13, ID 132903. https://doi.org/10.1063/1.4999291

    Article  CAS  Google Scholar 

  147. Adelmann, C., Tielens, H., Dewulf, D., Hardy, A., Pierreux, D., Swerts, J., Rosseel, E., Shi, X., Van Bael, M.K., Kittl, J.A., and Van Elshocht, S., J. Electrochem. Soc., 2010, vol. 157, no. 4, pp. G105–G110. https://doi.org/10.1149/1.3301663

    Article  CAS  Google Scholar 

  148. Østreng, E., Sønsteby, H.H., Sajavaara, T., Nilsen, O., and Fjellvåg, H., J. Mater. Chem. C, 2013, vol. 1, no. 27, pp. 4283–4290. https://doi.org/10.1039/C3TC30271G

    Article  Google Scholar 

  149. Onaya, T., Nabatame, T., Sawamoto, N., Ohi, A., Ikeda, N., Nagata, T., and Ogura, A., Microelectron. Eng., 2019, vol. 215, ID 111013. https://doi.org/10.1016/j.mee.2019.111013

    Article  CAS  Google Scholar 

  150. Chang, S., Selvaraj, S.K., Choi, Y.Y., Hong, S., Nakhmanson, S.M., and Takoudis, C.G., J. Vac. Sci. Technol. A, 2016, vol. 34, no. 1, ID 01A119. https://doi.org/10.1116/1.4935650

    Article  CAS  Google Scholar 

  151. Chernikova, A.G., Kuzmichev, D.S., Negrov, D.V., Kozodaev, M.G., Polyakov, S.N., and Markeev, A.M., Appl. Phys. Lett., 2016, vol. 108, no. 24, ID 242905. https://doi.org/10.1063/1.4953787

    Article  CAS  Google Scholar 

  152. Kozodaev, M.G., Lebedinskii, Yu.Yu., Chernikova, A.G., Polyakov, S.N., and Markeev, A.M., Phys. Status Solidi A, 2017, vol. 214, no. 6, ID 1700056. https://doi.org/10.1002/pssa.201700056

    Article  CAS  Google Scholar 

  153. Chen, Y., Wang, L., Liu, L., Tang, L., Yuan, X., Chen, H., Zhou, K., and Zhang, D., J. Mater. Sci., 2021, vol. 56, no. 10, pp. 6064–6072. https://doi.org/10.1007/s10853-020-05680-6

    Article  CAS  Google Scholar 

  154. Kil, D.S., Song, H.S., Lee, K.J., Hong, K., Kim, J.H., Park, K.S., Yeom, S.J., Roh, J.S., Kwak, N.J., Sohn, H.C., and Kim, J.W., Abstracts of Papers, 2006 Symp. on VLSI Technol., Digest of Technical Papers, 2006, pp. 38–39. https://doi.org/10.1109/VLSIT.2006.1705205

  155. Patent RU 2524415 C1, Publ. 2014.

  156. Matveyev, Y., Egorov, K., Markeev, A., and Zenkevich, A., J. Appl. Phys., 2015, vol. 117, no. 4, ID 044901. https://doi.org/10.1063/1.4905792

    Article  CAS  Google Scholar 

  157. Egorov, K.V., Kirtaev, R.V., Lebedinskii, Yu.Yu., Markeev, A.M., Matveyev, Y.A., Orlov, O.M., Zablotskiy, A.V., and Zenkevich, A.V., Phys. Status Solidi A, 2015, vol. 212, no. 4, pp. 809–816. https://doi.org/10.1002/pssa.201431674

    Article  CAS  Google Scholar 

  158. Jain, B., Huang, C.S., Misra, D., Tapily, K., Clark, R.D., Consiglio, S., Wajda, C.S., and Leusink, G.J., ECS Trans., 2019, vol. 89, no. 3, pp. 39–44. https://doi.org/10.1149/08903.0039ecst

    Article  CAS  Google Scholar 

  159. Hämäläinen, J., Ritala, M., and Leskelä, M., Chem. Mater., 2014, vol. 26, no. 1, pp. 786–801. https://doi.org/10.1021/cm402221y

    Article  CAS  Google Scholar 

  160. Vasilyev, V.Yu., Nano- Microsyst. Technol., 2016, vol. 18, no. 7, pp. 461–464.

    Google Scholar 

  161. Knisley, T.J., Ariyasena, T.C., Sajavaara, T., Saly, M.J., and Winter, C.H., Chem. Mater., 2011, vol. 23, no. 20, pp. 4417–4419. https://doi.org/10.1021/cm202475e

    Article  CAS  Google Scholar 

  162. Tripathi, T.S. and Karppinen, M., Chem. Mater., 2017, vol. 29, no. 3, pp. 1230–1235. https://doi.org/10.1021/acs.chemmater.6b04597

    Article  CAS  Google Scholar 

  163. Klesko, J.P., Kerrigan, M.M., and Winter, C.H., Chem. Mater., 2016, vol. 28, no. 3, pp. 700–703. https://doi.org/10.1021/acs.chemmater.5b03504

    Article  CAS  Google Scholar 

  164. Yuan, G., Shimizu, H., Momose, T., and Shimogaki, Y., J. Vac. Sci. Technol. A, 2014, vol. 32, no. 1, ID 01A104. https://doi.org/10.1116/1.4829361

    Article  CAS  Google Scholar 

  165. Blanquet, E., Mantoux, A., Pons, M., and Vahlas, C., J. Alloys Compd., 2010, vol. 504, suppl. 1, pp. S422–S424. https://doi.org/10.1016/j.jallcom.2010.03.205

    Article  Google Scholar 

  166. Knoops, H.C., Braeken, E.M., de Peuter, K., Potts, S.E., Haukka, S., Pore, V., and Kessels, W.M.M., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 35, pp. 19857–19862. https://doi.org/10.1021/acsami.5b06833

    Article  CAS  PubMed  Google Scholar 

  167. Meng, X., Byun, Y.C., Kim, H.S., Lee, J.S., Lucero, A.T., Cheng, L., and Kim, J., Materials, 2016, vol. 9, no. 12, ID 1007. https://doi.org/10.3390/ma9121007

    Article  CAS  PubMed Central  Google Scholar 

  168. Vasil’ev, V.Yu., Elektron. Tekh., Ser. 3: Mikroelektronika, 2020, no. 1 (177), pp. 31–41. https://doi.org/10.7868/S2410993220010042

    Article  Google Scholar 

  169. Yun, H.J., Kim, H., and Choi, B.J., Korean J. Mater. Res., 2019, vol. 29, no. 9, pp. 567–577. https://doi.org/10.3740/MRSK.2019.29.9.567

    Article  Google Scholar 

  170. Nahar, M., Rocklein, N., Andreas, M., Funston, G., and Goodner, D., J. Vac. Sci. Technol. A, 2017, vol. 35, no. 1, ID 01B144. https://doi.org/10.1116/1.4972859

    Article  CAS  Google Scholar 

  171. Krylov, I., Zoubenko, E., Weinfeld, K., Kauffmann, Y., Xu, X., Ritter, D., and Eizenberg, M., J. Vac. Sci. Technol. A, 2018, vol. 36, no. 5, ID 051505. https://doi.org/10.1116/1.5035422

    Article  CAS  Google Scholar 

  172. Yeon, C., Jung, J., Byun, H., Tan, K.C., Song, T., Kim, S., Kim, J.H., Lee, S.J., and Park, Y.S., AIP Adv., 2021, vol. 11, no. 1, ID 015218. https://doi.org/10.1063/5.0031127

    Article  CAS  Google Scholar 

  173. Kozen, A.C., Sowa, M.J., Ju, L., Strandwitz, N.C., Zeng, G., Babuska, T.F., Hsain, Z., and Krick, B.A., J. Vac. Sci. Technol. A, 2019, vol. 37, no. 6, ID 061505. https://doi.org/10.1116/1.5109671

    Article  CAS  Google Scholar 

  174. Sowa, M.J., Ju, L., Kozen, A.C., Strandwitz, N.C., Zeng, G., Babuska, T.F., Hsain, Z., and Krick, B.A., J. Vac. Sci. Technol. A, 2018, vol. 36, no. 6, ID 06A103. https://doi.org/10.1116/1.5037463

    Article  CAS  Google Scholar 

  175. Kukli, K., Kemell, M., Castán, H., Dueñas, S., Seemen, H., Rähn, M., Link, J., Stern, R., Ritala, M., and Leskelä, M., ECS J. Solid State Sci. Technol., 2018, vol. 7, no. 9, pp. P501–P508. https://doi.org/10.1149/2.0261809jss

    Article  CAS  Google Scholar 

  176. Jõgiaas, T., Kull, M., Seemen, H., Ritslaid, P., Kukli, K., and Tamm, A., J. Vac. Sci. Technol. A, 2020, vol. 38, no. 2, ID 022406. https://doi.org/10.1116/1.5131563

    Article  CAS  Google Scholar 

  177. Ihanus, J., Ritala, M., Leskelä, M., Soininen, E., Park, W., Kaloyeros, A.E., Harris, W., Barth, K.W., Topol, A.W., Sajavaara, T., and Keinonen, J., J. Appl. Phys., 2003, vol. 94, no. 6, pp. 3862–3868. https://doi.org/10.1063/1.1603349

    Article  CAS  Google Scholar 

  178. Anila, E.I. and Jayaraj, M.K., J. Lumin., 2010, vol. 130, no. 11, pp. 2180–2183. https://doi.org/10.1016/j.jlumin.2010.06.016

    Article  CAS  Google Scholar 

  179. Mishra, S., Kshatri, D.S., Khare, A., Tiwari, S., and Dwivedi, P.K., Mater. Lett., 2017, vol. 198, pp. 101–105. https://doi.org/10.1016/j.matlet.2017.04.013

    Article  CAS  Google Scholar 

  180. Kuhs, J., Hens, Z., and Detavernier, C., J. Vac. Sci. Technol. A, 2019, vol. 37, no. 2, ID 020915. https://doi.org/10.1116/1.5079553

    Article  CAS  Google Scholar 

  181. Rosa, J., Heikkilä, M.J., Sirkiä, M., and Merdes, S., Materials, 2021, vol. 14, no. 6, ID 1505. https://doi.org/10.3390/ma14061505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Leskelä, M., Mattinen, M., and Ritala, M., J. Vac. Sci. Technol. B, 2019, vol. 37, no. 3, ID 030801. https://doi.org/10.1116/1.5083692

    Article  CAS  Google Scholar 

  183. Mitsuhashi, E., Yano, Y., Susukida, M., Hirabayashi, J., Tuenge, R., and Dickey, E., SID Int. Symp. Dig. Tech. Pap., 2004, vol. 35, no. 1, pp. 1151–1153. https://doi.org/10.1889/1.1833130

    Article  CAS  Google Scholar 

  184. Bakke, J.R., Jung, H.J., Tanskanen, J.T., Sinclair, R., and Bent, S.F., Chem. Mater., 2010, vol. 22, no. 16, pp. 4669–4678. https://doi.org/10.1021/cm100874f

    Article  CAS  Google Scholar 

  185. Smet, P.F., Moreels, I., Hens, Z., and Poelman, D., Materials, 2010, vol. 3, no. 4, pp. 2834–2883. https://doi.org/10.3390/ma3042834

    Article  CAS  PubMed Central  Google Scholar 

  186. Miikkulainen, V., Leskelä, M., Ritala, M., and Puurunen, R.L., J. Appl. Phys., 2013, vol. 113, no. 2, ID 021301. https://doi.org/10.1063/1.4757907

    Article  CAS  Google Scholar 

  187. Jing, Y., Merkx, M.J.M., Cai, J., Cao, K., Kessels, W.M.M., Mackus, A.J.M., and Chen, R., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 47, pp. 53519–53527. https://doi.org/10.1021/acsami.0c16082

    Article  CAS  PubMed  Google Scholar 

  188. Cheng, C.Y. and Mao, M.H., J. Appl. Phys., 2016, vol. 120, no. 8, ID 083103. https://doi.org/10.1063/1.4961425

    Article  CAS  Google Scholar 

  189. Van Ommen, J.R. and Goulas, A., Mater. Today Chem., 2019, vol. 14, ID 100183. https://doi.org/10.1016/j.mtchem.2019.08.002

    Article  CAS  Google Scholar 

  190. Yu, K., Lin, X., Lu, G., Wen, Z., Yuan, C., and Chen, J., RSC Adv., 2012, vol. 2, no. 20, pp. 7843–7848. https://doi.org/10.1039/C2RA20979A

  191. Sosnov, E.A., Bulgakova, K.I., and Pivneva, S.P., in Issledovaniya, sintez i tekhnologiya lyuminoforov: Sbornik nauchnykh trudov OAO Lyuminofor (Studies, Synthesis, and Technology of Luminophores: Coll. of Scientific Papers of OAO Lyuminofor), Stavropol: Lyuminofor, 1997, issue 42, pp. 39–44.

    Google Scholar 

  192. Weimer, A.W., J. Nanopart. Res., 2019, vol. 21, no. 1, ID 9. https://doi.org/10.1007/s11051-018-4442-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Benick, J., Hoex, B., Van De Sanden, M.C.M., Kessels, W.M.M., Schultz, O., and Glunz, S.W., Appl. Phys. Lett., 2008, vol. 92, no. 25, ID 253504. https://doi.org/10.1063/1.2945287

    Article  CAS  Google Scholar 

  194. Nanu, M., Schoonman, J., and Goossens, A., Adv. Funct. Mater., 2005, vol. 15, no. 1, pp. 95–100. https://doi.org/10.1002/adfm.200400150

    Article  CAS  Google Scholar 

  195. Schmidt, J., Werner, F., Veith, B., Zielke, D., Bock, R., Tiba, M.V., Poodt, P., Roozeboom, F., Li, A., Cuevas, A., and Brendel, R., Abstracts of Papers, Proc. 25th Eur. Photovoltaic Solar Energy Conf. (EU PVSEC/WCPEC-5), Valencia, Spain, 2010, pp. 1130–1133. https://doi.org/10.4229/25theupvsec2010-2ao.1.6

  196. Battaglia, C., De Nicolas, S.M., De Wolf, S., Yin, X., Zheng, M., Ballif, C., and Javey, A., Appl. Phys. Lett., 2014, vol. 104, no. 11, ID 113902. https://doi.org/10.1063/1.4868880

    Article  CAS  Google Scholar 

  197. Macco, B., Vos, M.F.J., Thissen, N.F.W., Bol, A.A., and Kessels, W.M.M., Phys. Status Solidi RRL, 2015, vol. 9, no. 7, pp. 393–396. https://doi.org/10.1002/pssr.201510117

    Article  CAS  Google Scholar 

  198. Gerling, L.G., Mahato, S., Morales-Vilches, A., Masmitja, G., Ortega, P., Voz, C., Alcubilla, R., and Puigdollers, J., Sol. Energy Mater. Sol. Cells, 2016, vol. 145, no. 2, pp. 109–115. https://doi.org/10.1016/j.solmat.2015.08.028

    Article  CAS  Google Scholar 

  199. Islam, R. and Saraswat, K.C., Abstracts of Papers, IEEE 40th Photovoltaic Specialist Conf. (PVSC): Proc., Denver, CO, USA, 2014, pp. 285–289. https://doi.org/10.1109/PVSC.2014.6924915

  200. Islam, R., Ramesh, P., Nam, J.H., and Saraswat, K.C., Abstracts of Papers, EEE 42nd Photovoltaic Specialist Conf. (PVSC): Proc., New Orleans, LA, USA, 2015. https://doi.org/10.1109/PVSC.2015.7355921

  201. Avasthi, S., McClain, W.E., Man, G., Kahn, A., Schwartz, J., and Sturm, J.C., Appl. Phys. Lett., 2013, vol. 102, no. 20, ID 203901. https://doi.org/10.1063/1.4803446

    Article  CAS  Google Scholar 

  202. Lin, Z., Jiang, C., Zhu, C., and Zhang, J., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 3, pp. 713–718. https://doi.org/10.1021/am302252p

    Article  CAS  PubMed  Google Scholar 

  203. Banga, D., Jarayaju, N., Sheridan, L., Kim, Y.-G., Perdue, B., Zhang, X., Zhang, Q., and Stickney, J., Langmuir, 2012, vol. 28, no. 5, pp. 3024–3031. https://doi.org/10.1021/la203574y

    Article  CAS  PubMed  Google Scholar 

  204. Sutherland, B.R., Hoogland, S., Adachi, M.M., Kanjanaboos, P., Wong, C.T.O., McDowell, J.J., Xu, J., Voznyy, O., Ning, Z., Houtepen, A.J., and Sargent, E.H., Adv. Mater., 2015, vol. 27, no. 1, pp. 53–58. https://doi.org/10.1002/adma.201403965

    Article  CAS  PubMed  Google Scholar 

  205. Luka, G., Krajewski, T.A., Witkowski, B.S., Wisz, G., Virt, I.S., Guziewicz, E., and Godlewski, M., J. Mater. Sci.: Mater. Electron., 2011, vol. 22, no. 12, pp. 1810–1815. https://doi.org/10.1007/s10854-011-0367-0

    Article  CAS  Google Scholar 

  206. Pollock, E.B. and Lad, R.J., J. Vac. Sci. Technol. A, 2014, vol. 32, no. 4, ID 041516. https://doi.org/10.1116/1.4885063

    Article  CAS  Google Scholar 

  207. Van Delft, J.A., Garcia-Alonso, D., and Kessels, W.M.M., Semicond. Sci. Technol., 2012, vol. 27, no. 7, ID 074002. https://doi.org/10.1088/0268-1242/27/7/074002

    Article  CAS  Google Scholar 

  208. Luchinin, V., Nanoindustriya, 2013, no. 8 (46), pp. 26–32.

    Google Scholar 

  209. Di Giacomo, F., Zardetto, V., D’Epifanio, A., Pescetelli, S., Matteocci, F., Razza, S., Di Carlo, A., Licoccia, S., Kessels, W.M.M., Creatore, M., and Brown, T.M., Adv. Energy Mater., 2015, vol. 5, no. 8, ID 1401808. https://doi.org/10.1002/aenm.201401808

    Article  CAS  Google Scholar 

  210. King, D.M., Liang, X., Burton, B.B., Akhtar, M.K., and Weimer, A.W., Nanotechnology, 2008, vol. 19, no. 25, ID 255604. https://doi.org/10.1088/0957-4484/19/25/255604

    Article  CAS  PubMed  Google Scholar 

  211. Liang, X. and Weimer, A.W., J. Nanopart. Res., 2010, vol. 12, no. 1, pp. 135–142. https://doi.org/10.1007/s11051-009-9587-0

    Article  CAS  Google Scholar 

  212. King, D.M., Liang, X., and Weimer, A.W., Powder Technol., 2012, vol. 221, pp. 13–25. https://doi.org/10.1016/j.powtec.2011.12.020

    Article  CAS  Google Scholar 

  213. Jang, E., Sridharan, K., Park, Y.M., and Park, T.J., Chem. Eur. J., 2016, vol. 22, no. 34, pp. 12022–12026. https://doi.org/10.1002/chem.201600815

    Article  CAS  PubMed  Google Scholar 

  214. Azizpour, H., Talebi, M., Tichelaar, F.D., Sotudeh-Gharebagh, R., Guo, J., Van Ommen, J.R., and Mostoufi, N., Appl. Surf. Sci., 2017, vol. 426, pp. 480–496. https://doi.org/10.1016/j.apsusc.2017.07.168

    Article  CAS  Google Scholar 

  215. Dwivedi, V., Hasegawa, M., Adomaitis, R., Salami, H., and Uy, A., Abstracts of Papers, 48th Int. Conf. on Environmental Systems, Albuquerque, New Mexico, July 8–12, 2018, ICES-2018-16.http://hdl.handle.net/2346/74034

  216. Guo, J., Benz, D., Nguyen, T.-T.D., Nguyen, P.-H., Le, T.-L.T., Nguyen, H.-H., La Zara, D., Liang, B., Hintzen, H.T., van Ommen, J.R., and Bui, H.V., Appl. Surf. Sci., 2020, vol. 530, ID 147244. https://doi.org/10.1016/j.apsusc.2020.147244

    Article  CAS  Google Scholar 

  217. Ninness, B.J., Bousfield, D.W., and Tripp, C.P., Colloids Surf. A, 2003, vol. 214, nos. 1–3, pp. 195–204. https://doi.org/10.1016/S0927-7757(02)00390-4

    Article  CAS  Google Scholar 

  218. King, D.M., Liang, X., Carney, C.S., Hakim, L.F., Li, P., and Weimer, A.W., Adv. Funct. Mater., 2008, vol. 18, no. 4, pp. 607–615. https://doi.org/10.1002/adfm.200700705

    Article  CAS  Google Scholar 

  219. Scheffe, J.R., Francés, A., King, D.M., Liang, X., Branch, B.A., Cavanagh, A.S., George, S.M., and Weimer, A.W., Thin Solid Films, 2009, vol. 517, no. 6, pp. 1874–1879. https://doi.org/10.1016/j.tsf.2008.09.086

    Article  CAS  Google Scholar 

  220. Malygin, A.A., Russ. J. Appl. Chem., 1996, vol. 69, no. 10, pp. 1419–1426.

    Google Scholar 

  221. Malygin, А.А., Маlkov, А.А., and Sosnov, E.A., Russ. Chem. Bull., 2017, vol. 66, no. 11, pp. 1939–1962. https://doi.org/10.1007/s11172-017-1971-9 

    Article  CAS  Google Scholar 

  222. Choi, S.-W., Park, J.Y., Lee, C., Lee, J.G., and Kim, S.S., J. Am. Ceram. Soc., 2011, vol. 94, no. 7, pp. 1974–1977. https://doi.org/10.1111/j.1551-2916.2011.04600.x

    Article  CAS  Google Scholar 

  223. Li, F., Yao, X., Wang, Z., Xing, W., Jin, W., Huang, J., Wang, Y., Nano Lett., 2012, vol. 12, no. 9, pp. 5033–5038. https://doi.org/10.1021/nl3028312

    Article  CAS  PubMed  Google Scholar 

  224. Kim, W.S., Lee, B.S., Kim, D.H., Kim, H.C., Yu, W.R., and Hong, S.H., Nanotechnology, 2010, vol. 21, no. 24, ID 245605. https://doi.org/10.1088/0957-4484/21/24/245605

    Article  CAS  PubMed  Google Scholar 

  225. Guo, L., Zhong, Z., and Wang, Y., Adv. Mater. Interfaces, 2016, vol. 3, no. 16, ID 1600017. https://doi.org/10.1002/admi.201600017

    Article  CAS  Google Scholar 

  226. King, J.S., Neff, C.W., Blomquist, S., Forsythe, E., Morton, D., and Summers, C.J., Phys. Status Solidi B, 2004, vol. 241, no. 3, pp. 763–766. https://doi.org/10.1002/pssb.200304287

    Article  Google Scholar 

  227. King, J.S., Heineman, D., Graugnard, E., and Summers, C.J., Appl. Surf. Sci., 2005, vol. 244, nos. 1–4, pp. 511–516. https://doi.org/10.1016/j.apsusc.2004.10.110

    Article  CAS  Google Scholar 

  228. Scharrer, M., Wu, X., Yamilov, A., Cao, H., and Chang, R.P., Appl. Phys. Lett., 2005, vol. 86, no. 15, ID 151113. https://doi.org/10.1063/1.1900957

    Article  CAS  Google Scholar 

  229. King, J.S., Graugnard, E., and Summers, C.J., Appl. Phys. Lett., 2006, vol. 88, no. 8, ID 081109. https://doi.org/10.1063/1.2177351

    Article  CAS  Google Scholar 

  230. Sechrist, Z.A., Schwartz, B.T., Lee, J.H., McCormick, J.A., Piestun, R., Park, W., and George, S.M., Chem. Mater., 2006, vol. 18, no. 15, pp. 3562–3570. https://doi.org/10.1021/cm060263d

    Article  CAS  Google Scholar 

  231. Cha, H., Lee, J., Jordan, L.R., Lee, S.H., Oh, S.H., Kim, H.J., Park, J., Hong, S., and Jeon, H., Nanoscale, 2015, vol. 7, no. 8, pp. 3565–3571. https://doi.org/10.1039/C4NR07552H

    Article  CAS  PubMed  Google Scholar 

  232. Furlan, K.P., Pasquarelli, R.M., Krekeler, T., Ritter, M., Zierold, R., Nielsch, K., Schneider, G.A., and Janssen, R., Ceram. Int., 2017, vol. 43, no. 14, pp. 11260–11264. https://doi.org/10.1016/j.ceramint.2017.05.176

    Article  CAS  Google Scholar 

  233. Bakos, L.P., Karajz, D., Katona, A., Hernadi, K., Parditka, B., Erdélyi, Z., Lukács, I., Hórvölgyi, Z., Szitási, G., and Szilágyi, I.M., Appl. Surf. Sci., 2020, vol. 504, ID 144443. https://doi.org/10.1016/j.apsusc.2019.144443

    Article  CAS  Google Scholar 

  234. Lee, W., Dasgupta, N.P., Jung, H.J., Lee, J.R., Sinclair, R., and Prinz, F.B., Nanotechnology, 2010, vol. 21, no. 48, ID 485402. https://doi.org/10.1088/0957-4484/21/48/485402

    Article  CAS  PubMed  Google Scholar 

  235. Chen, P., Mitsui, T., Farmer, D.B., Golovchenko, J., Gordon, R.G., and Branton, D., Nano Lett., 2004, vol. 4, no. 7, pp. 1333–1337. https://doi.org/10.1021/nl0494001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kuzema, A.V., Malygin, A.A., Ermilova, M.M., Orekhova, N.V., Basov, N.L., and Tereshchenko, G.F., Russ. J. Appl. Chem., 2009, vol. 82, no. 3, pp. 378–386. https://doi.org/10.1134/S1070427209030070 

    Article  CAS  Google Scholar 

  237. Malygin, A.A., Malkov, A.A., Mikhailovskii, S.V., Basov, N.L., Ermilova, M.M., Orekhova, N.V., and Tereshchenko, G.F., Nanotechnol. Russ., 2010, vol. 5, nos. 3–4, pp. 153–159. https://doi.org/10.1134/S1995078010030018 ].

    Article  Google Scholar 

  238. Detavernier, C., Dendooven, J., Sree, S.P., Ludwig, K.F., and Martens, J.A., Chem. Soc. Rev., 2011, vol. 40, no. 11, pp. 5242–5253. https://doi.org/10.1039/C1CS15091J

    Article  CAS  PubMed  Google Scholar 

  239. Wang, Q., Wang, X., Wang, Z., Huang, J., and Wang, Y., J. Membr. Sci., 2013, vol. 442, pp. 57–64. https://doi.org/10.1016/j.memsci.2013.04.026

    Article  CAS  Google Scholar 

  240. Yang, H.C., Waldman, R.Z., Chen, Z., and Darling, S.B., Nanoscale, 2018, vol. 10, no. 44, pp. 20505–20513. https://doi.org/10.1039/C8NR08114J

    Article  CAS  PubMed  Google Scholar 

  241. Mikhailovskii, S.V., Zhilyaeva, N.A., Obletsova, A.A., Ermilova, M.M., Orekhova, N.V., Malygin, A.A., and Yaroslavtsev, A.B., Russ. J. Appl. Chem., 2016, vol. 89, no. 1, pp. 34–39. https://doi.org/10.1134/S1070427216010055 

    Article  CAS  Google Scholar 

  242. Zhilyaeva, N.A., Ermilova, M.M., Orekhova, N.V., Basov, N.L., Mikhailovskii, S.V., Malygin, A.A., and Yaroslavtsev, A.B., Inorg. Mater., 2018, vol. 54, no. 11, pp. 1136–1143. https://doi.org/10.1134/S002016851811016X 

    Article  CAS  Google Scholar 

  243. Narayan, R.J., Adiga, S.P., Pellin, M.J., Curtiss, L.A., Hryn, A.J., Stafslien, S., Chisholm, B., Shih, C.C., Shih, C.M., Lin, S.J., and Su, Y.Y., Philos. Trans. R. Soc. A, 2010, vol. 368, no. 1917, pp. 2033–2064. https://doi.org/10.1098/rsta.2010.0011

    Article  CAS  Google Scholar 

  244. Rosental, A., Tarre, A., Gerst, A., Sundqvist, J., Hårsta, A., Aidla, A., Aarik, J., Sammelselg, V., and Uustare, T., Sens. Actuators B, 2003, vol. 93, nos. 1–3, pp. 552–555. https://doi.org/10.1016/S0925-4005(03)00236-3

    Article  CAS  Google Scholar 

  245. Rosental, A., Tarre, A., Gerst, A., Kasikov, A., Lu, J., Ottosson, M., and Uustare, T., IEEE Sens. J., 2013, vol. 13, no. 5, pp. 1648–1655. https://doi.org/10.1109/JSEN.2013.2238227

    Article  CAS  Google Scholar 

  246. Marichy, C. and Pinna, N., Adv. Mater. Interfaces, 2016, vol. 3, no. 21, ID 1600335. https://doi.org/10.1002/admi.201600335

    Article  CAS  Google Scholar 

  247. Ng, S., Prášek, J., Zazpe, R., Pytlíček, Z., Spotz, Z., Pereira, J.R., Michalička, J., Přikryl, J., Krbal, M., Sopha, H., Hubálek, J., and Macák, J.M., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 29, pp. 33386–33396. https://doi.org/10.1021/acsami.0c07791

    Article  CAS  PubMed  Google Scholar 

  248. Lou, C., Yang, C., Zheng, W., Liu, X., and Zhang, J., Sens. Actuators B, 2021, vol. 329, ID 129218. https://doi.org/10.1016/j.snb.2020.129218

    Article  CAS  Google Scholar 

  249. Listewnik, P., Hirsch, M., Struk, P., Weber, M., Bechelany, M., and Jędrzejewska-Szczerska, M., Nanomaterials, 2019, vol. 9, no. 2, ID 306. https://doi.org/10.3390/nano9020306

    Article  CAS  PubMed Central  Google Scholar 

  250. Listewnik, P., Eng. Proc., 2020, vol. 2, no. 1, pp. 99–104. https://doi.org/10.3390/engproc2020002099

    Article  Google Scholar 

  251. Kaushik, P., Eliáš, M., Michalička, J., Hegemann, D., Pytlíček, Z., Nečas, D., and Zajíčková, L., Surf. Coat. Technol., 2019, vol. 370, pp. 235–243. https://doi.org/10.1016/j.surfcoat.2019.04.031

    Article  CAS  Google Scholar 

  252. Tarre, A., Möldre, K., Niilisk, A., Mändar, H., Aarik, J., and Rosental, A., J. Vac. Sci. Technol. A, 2013, vol. 31, no. 1, ID 01A118. https://doi.org/10.1116/1.4764892

    Article  CAS  Google Scholar 

  253. Mokrushin, A.S., Simonenko, E.P., Simonenko, N.P., Akkuleva, K.T., Antipov, V.V., Zaharova, N.V., Malygin, A.A., Bukunov, K.A., Sevastyanov, V.G., and Kuznetsov, N.T., Appl. Surf. Sci., 2019, vol. 463, pp. 197–202. https://doi.org/10.1016/j.apsusc.2018.08.208

    Article  CAS  Google Scholar 

  254. Arsent’ev, M.Y., Kalinina, M.V., Tikhonov, P.A., Morozova, L.V., Egorova, T.L., and Shilova, O.A., Glass Phys. Chem., 2014, vol. 40, no. 6, pp. 629–634. https://doi.org/10.1134/S1087659614060029 

    Article  Google Scholar 

  255. Chen, Y., Yuchi, Q., Li, T., Yang, G., Miao, J., Huang, C., Liu, J., Li, A., Qin, Y., and Zhang, L., Sens. Actuators B, 2020, vol. 305, ID 127436. https://doi.org/10.1016/j.snb.2019.127436

    Article  CAS  Google Scholar 

  256. Tarre, A., Aarik, J., Mändar, H., Niilisk, A., Pärna, R., Rammula, R., Uustare, T., Rosental, A., and Sammelselg, V., Appl. Surf. Sci., 2008, vol. 254, no. 16, pp. 5149–5156. https://doi.org/10.1016/j.apsusc.2008.02.016

    Article  CAS  Google Scholar 

  257. Ran, G., Xia, Y., Liang, L., and Fu, C., Bioelectrochemistry, 2021, vol. 140, ID 107820. https://doi.org/10.1016/j.bioelechem.2021.107820

    Article  CAS  PubMed  Google Scholar 

  258. Du, X. and George, S.M., Sens. Actuators B, 2008, vol. 135, no. 1, pp. 152–160. https://doi.org/10.1016/j.snb.2008.08.015

    Article  CAS  Google Scholar 

  259. Rogov, A.M., Pavlenko, T.S., and Malygin, A.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2010, no. 8 (34), pp. 40–43.

    Google Scholar 

  260. Purniawan, A., Pandraud, G., Moh, T.S.Y., Marthen, A., Vakalopoulos, K.A., French, P.J., and Sarro, P.M., Sens. Actuators A, 2012, vol. 188, pp. 127–132. https://doi.org/10.1016/j.sna.2012.05.037

    Article  CAS  Google Scholar 

  261. Śmietana, M., Grochowski, J., Myśliwiec, M., Wachnicki, Ł., Godlewski, M., and Witkowski, B.S., Procedia Eng., 2012, vol. 47, pp. 1081–1084. https://doi.org/10.1016/j.proeng.2012.09.338

    Article  CAS  Google Scholar 

  262. Yebo, N.A., Sree, S.P., Levrau, E., Detavernier, C., Hens, Z., Martens, J.A., and Baets, R., Opt. Express, 2012, vol. 20, no. 11, pp. 11855–11862. https://doi.org/10.1364/OE.20.011855

    Article  CAS  PubMed  Google Scholar 

  263. Viter, R., Chaaya, A.A., Iatsunskyi, I., Nowaczyk, G., Kovalevskis, K., Erts, D., Miele, P., Smyntyna, V., and Bechelany, M., Nanotechnology, 2015, vol. 26, no. 10, ID 105501. https://doi.org/10.1088/0957-4484/26/10/105501

    Article  CAS  PubMed  Google Scholar 

  264. Karatutlu, A., Turk. J. Phys., 2020, vol. 44, no. 1, pp. 49–56. https://doi.org/10.3906/fiz-1908-6

    Article  CAS  Google Scholar 

  265. Malygin, A.A., Antipov, V.V., Kochetkova, A.S., and Buimistryuk, G.Y., Russ. J. Appl. Chem., 2018, vol. 91, no. 1, pp. 12–22. https://doi.org/10.1134/S1070427218010032 

    Article  CAS  Google Scholar 

  266. Aleskovskii, V.B., Khimiya nadmolekulyarnykh soedinenii (Chemistry of Supramolecular Compounds), St. Petersburg: Sankt-Peterb. Gos. Univ., 1996.

    Google Scholar 

  267. Li, J., Liang, X., King, D.M., Jiang, Y.-B., and Weimer, A.W., Appl. Catal. B, 2010, vol. 97, nos. 1–2, pp. 220–226. https://doi.org/10.1016/j.apcatb.2010.04.003

    Article  CAS  Google Scholar 

  268. Feng, H., Lu, J., Stair, P.C., and Elam, J.W., Catal. Lett., 2011, vol. 141, no. 4, pp. 512–517. https://doi.org/10.1007/s10562-011-0548-8

    Article  CAS  Google Scholar 

  269. Sun, S., Zhang, G., Gauquelin, N., Chen, N., Zhou, J., Yang, S., Chen, W., Meng, X., Geng, D., Banis, M.N., and Li, R., Sci. Rep., 2013, vol. 3, no. 1, pp. 1–9. https://doi.org/10.1038/srep01775

    Article  CAS  Google Scholar 

  270. Lu, J., Elam, J.W., and Stair, P.C., Acc. Chem. Res., 2013, vol. 46, no. 8, pp. 1806–1815. https://doi.org/10.1021/ar300229c

    Article  CAS  PubMed  Google Scholar 

  271. Mackus, A.J.M., Weber, M.J., Thissen, N.F.W., Garcia-Alonso, D., Vervuurt, R.H.J., Assali, S., Bol, A.A., Verheijen, M.A., and Kessels, W.M.M., Nanotechnology, 2015, vol. 27, no. 3, ID 034001. https://doi.org/10.1088/0957-4484/27/3/034001

    Article  CAS  PubMed  Google Scholar 

  272. Singh, J.A., Yang, N., Liu, X., Tsai, C., Stone, K.H., Johnson, B., Koh, A.L., and Bent, S.F., J. Phys. Chem. C, 2018, vol. 122, no. 4, pp. 2184–2194. https://doi.org/10.1021/acs.jpcc.7b10541

    Article  CAS  Google Scholar 

  273. Grillo, F., Van Bui, H., La Zara, D., Aarnink, A.A., Kovalgin, A.Y., Kooyman, P., Kreutzer, M.T., and van Ommen, J.R., Small, 2018, vol. 14, no. 23, ID 1800765. https://doi.org/10.1002/smll.201800765

    Article  CAS  Google Scholar 

  274. Khalily, M.A., Yurderi, M., Haider, A., Bulut, A., Patil, B., Zahmakiran, M., and Uyar, T., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 31, pp. 26162–26169. https://doi.org/10.1021/acsami.8b04822

    Article  CAS  PubMed  Google Scholar 

  275. Topuz, F. and Uyar, T., Nanoscale Adv., 2019, vol. 1, no. 10, pp. 4082–4089. https://doi.org/10.1039/C9NA00368A

    Article  CAS  Google Scholar 

  276. Pagán-Torres, Y.J., Gallo, J.M.R., Wang, D., Pham, H.N., Libera, J.A., Marshall, C.L., Elam, J.W., Datye, A.K., and Dumesic, J.A., ACS Catal., 2011, vol. 1, no. 10, pp. 1234–1245. https://doi.org/10.1021/cs200367t

    Article  CAS  Google Scholar 

  277. Peters, A.W., Li, Z., Farha, O.K., and Hupp, J.T., ACS Nano, 2015, vol. 9, no. 8, pp. 8484–8490. https://doi.org/10.1021/acsnano.5b03429

    Article  CAS  PubMed  Google Scholar 

  278. Kim, J., Iivonen, T., Hämäläinen, J., Kemell, M., Meinander, K., Mizohata, K., Beranek, R., Leskelä, M., and Devi, A., Chem. Mater., 2017, vol. 29, no. 14, pp. 5796–5805. https://doi.org/10.1021/acs.chemmater.6b05346

    Article  CAS  Google Scholar 

  279. Chen, R., Shan, B., Liu, X., and Cao, K., in Recent Advances in Nanoparticle Catalysis. Molecular Catalysis, vol. 1, van Leeuwen, P.W.N.M. and Claver, C., Eds., Cham: Springer, 2020, pp. 69–105. https://doi.org/10.1007/978-3-030-45823-2_3

    Book  Google Scholar 

  280. Grillo, F., Van Bui, H., Moulijn, J.A., Kreutzer, M.T., and Van Ommen, J.R., J. Phys. Chem. Lett., 2017, vol. 8, no. 5, pp. 975–983. https://doi.org/10.1021/acs.jpclett.6b02978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Grillo, F., Moulijn, J.A., Kreutzer, M.T., and van Ommen, J.R., Catal. Today, 2018, vol. 316, pp. 51–61. https://doi.org/10.1016/j.cattod.2018.02.020

    Article  CAS  Google Scholar 

  282. Malkov, A.A., Sosnov, E.A., and Malygin, A.A., in Napravlennyi sintez tverdykh veshchestv: Mezhvuzovskii sbornik (Directional Synthesis of Solids: Intercollegiate Coll.), St. Petersburg: Sankt-Peterb. Gos. Univ., 1992, issue 3, pp. 10–29.

    Google Scholar 

  283. Puurunen, R.L., J. Appl. Phys., 2005, vol. 97, no. 12, ID 121301. https://doi.org/10.1063/1.1940727

    Article  CAS  Google Scholar 

  284. Malkov, A.A., Sosnov, E.A., and Malygin, A.A., Russ. J. Appl. Chem., 2010, vol. 83, no. 9, pp. 1511–1519. https://doi.org/10.1134/S1070427210090016 

    Article  CAS  Google Scholar 

  285. Sosnov, E.A., Belova, S.A., and Malygin, A.A., Semiconductors, 2007, vol. 41, no. 5, pp. 495–497. https://doi.org/10.1134/S1063782607050016 

    Article  CAS  Google Scholar 

  286. Belova, S.A., Zakharova, N.V., Sosnov, E.A., and Malygin, A.A., in Khimicheskie reaktivy, reagenty i protsessy malotonnazhnoi khimii: Sbornik nauchnykh trudov (Chemicals, Reagents, and Processes of Low-Tonnage Chemistry: Coll. of Scientific Papers), Minsk: Belorusskaya Nauka, 2008, pp. 304–321.

  287. Barry, E., Mane, A.U., Libera, J.A., Elam, J.W., and Darling, S.B., J. Mater. Chem. A, 2017, vol. 5, no. 6, pp. 2929–2935. https://doi.org/10.1039/C6TA09014A

    Article  CAS  Google Scholar 

  288. Lee, D.T., Jamir, J.D., Peterson, G.W., and Parsons, G.N., Small, 2019, vol. 15, no. 10, ID 1805133. https://doi.org/10.1002/smll.201805133

    Article  CAS  Google Scholar 

  289. Iakovleva, E., Sillanpää, M., Khan, S., Kamwilaisak, K., Wang, S., and Tang, W.Z., Abstracts of Papers, IMWA 2017: 13th Int. Mine Water Association Congr.–Mine Water & Circular Economy: Proc., Lappeenranta, Finland, 2017, vol. 1, pp. 43–54.

  290. Zhao, J., Gong, B., Nunn, W.T., Lemaire, P.C., Stevens, E.C., Sidi, F.I., Williams, P.S., Oldham, C.J., Walls, H.J., Shepherd, S.D., and Browe, M.A., J. Mater. Chem. A, 2015, vol. 3, no. 4, pp. 1458–1464. https://doi.org/10.1039/C4TA05501B

    Article  CAS  Google Scholar 

  291. Leick, N., Strange, N.A., Schneemann, A., Stavila, V., Gross, K., Washton, N., Settle, A., Martinez, M.B., Gennett, T., and Christensen, S.T., ACS Appl. Energy Mater., 2021, vol. 4, no. 2, pp. 1150–1162. https://doi.org/10.1021/acsaem.0c02314

    Article  CAS  Google Scholar 

  292. Patent RU 2554819 C1, Publ. 2015.

  293. Patent RU 2566060 C1, Publ. 2015.

  294. Zemtsova, E.G., Morozov, P.E., and Smirnov, V.M., Mater. Phys. Mech., 2015, vol. 24, no. 4, pp. 374–381.

    CAS  Google Scholar 

  295. Liu, L., Bhatia, R., and Webster, T.J., Int. J. Nanomed., 2017, vol. 12, pp. 8711–8723. https://doi.org/10.2147/IJN.S148065

    Article  CAS  Google Scholar 

  296. Nazarov, D.V., Smirnov, V.M., Zemtsova, E.G., Yudintceva, N.M., Shevtsov, M.A., and Valiev, R.Z., ACS Biomat. Sci. Eng., 2018, vol. 4, no. 9, pp. 3268–3281. https://doi.org/10.1021/acsbiomaterials.8b00342

    Article  CAS  Google Scholar 

  297. Avila, I., Pantchev, K., Holopainen, J., Ritala, M., and Tuukkanen, J., J. Mater. Sci.: Mater. Med., 2018, vol. 29, no. 8, ID 111. https://doi.org/10.1007/s10856-018-6121-x

    Article  CAS  Google Scholar 

  298. Meleshko, A.A., Tolstoy, V.P., Afinogenov, G.E., Levshakova, A.S., Afinogenova, A.G., Mul’diyarov, V.P., Vissarionov, S.V., and Linnik, S.A., Ortoped. Travmatol. Vosstan. Khirurg. Detsk. Vozrasta, 2020, vol. 8, no. 2, pp. 217–230. https://doi.org/10.17816/PTORS33824

    Article  Google Scholar 

  299. Frizzera, F., Verzola, M.H.A., de Molon, R.S., de Oliveira, G.J.P.L., Giro, G., Spolidorio, L.C., Pereira, R.M.R., Tetradis, S., Cirelli, J.A., and Orrico, S.R.P., Clin. Oral Invest., 2019, vol. 23, no. 4, pp. 1733–1744. https://doi.org/10.1007/s00784-018-2612-x

    Article  Google Scholar 

  300. Amashaev, R.R., Ashurbekova, K.N., Dustova, G.D., Maksumova, A.M., and Abdulagatov, I.M., Abstracts of Papers, Aktual’nye voprosy endokrinologii: Materialy V Respublikanskoi nauchno-prakticheskoi konferentsii (Topical Problems oif Endocrinology: Proc. V Republican Scientific and Practical Conf.), Makhachkala: Dagestanskii Gos. Med. Univ., 2018, pp. 140–154.

  301. Abdulagatov, A.I., Amashaev, R.R., Maksumova, A.M., Ashurbekova, K.N., Aliev, A.A., Isaeva, R.Kh., Rabadanov, M.Kh., and Abdulagatov, I.M., Ecol. Med., 2019, vol. 2, no. 1, pp. 91–100. https://doi.org/10.34662/2588-0489.2019.2.1.91-100

    Article  Google Scholar 

  302. Ermakov, S.S., Nikolaev, K.G., and Tolstoy, V.P., Russ. Chem. Rev., 2016, vol. 85, no. 8, pp. 880–900. https://doi.org/10.1070/RCR4605 

    Article  CAS  Google Scholar 

  303. Tereshchenko, A., Bechelany, M., Viter, R., Khranovskyy, V., Smyntyna, V., Starodub, N., and Yakimova, R., Sens. Actuators B, 2016, vol. 229, pp. 664–677. https://doi.org/10.1016/j.snb.2016.01.099

    Article  CAS  Google Scholar 

  304. Fahrenkopf, N.M., Rice, P.Z., Bergkvist, M., Deskins, N.A., and Cady, N.C., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 10, pp. 5360–5368. https://doi.org/10.1021/am3013032

    Article  CAS  PubMed  Google Scholar 

  305. Im, H., Bantz, K.C., Lee, S.H., Johnson, T.W., Haynes, C.L., and Oh, S.H., Adv. Mater., 2013, vol. 25, no. 19, pp. 2678–2685. https://doi.org/10.1002/adma.201204283

    Article  CAS  PubMed  Google Scholar 

  306. Archibald, M.M., Rizal, B., Connolly, T., Burns, M.J., Naughton, M.J., and Chiles, T.C., Biosens. Bioelectron., 2015, vol. 74, pp. 406–410. https://doi.org/10.1016/j.bios.2015.06.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Lepoitevin, M., Bechelany, M., Balanzat, E., Janot, J.M., and Balme, S., Electrochim. Acta, 2016, vol. 211, pp. 611–618. https://doi.org/10.1016/j.electacta.2016.06.079

    Article  CAS  Google Scholar 

  308. Lee, W.I., Shrivastava, S., Duy, L.T., Kim, B.Y., Son, Y.M., and Lee, N.E., Biosens. Bioelectron., 2017, vol. 94, pp. 643–650. https://doi.org/10.1016/j.bios.2017.03.061

    Article  CAS  PubMed  Google Scholar 

  309. Lichtenstein, A., Havivi, E., Shacham, R., Hahamy, E., Leibovich, R., Pevzner, A., Krivitsky, V., Davivi, G., Presman, I., Elnathan, R., Engel, Y., Flaxer, E., and Patolsky, F., Nat. Commun., 2014, vol. 5, ID 4195. https://doi.org/10.1038/ncomms5195

    Article  CAS  PubMed  Google Scholar 

  310. Tereshchenko, A., Fedorenko, V., Smyntyna, V., Konup, I., Konup, A., Eriksson, M., Yakimova, R., Ramanavicius, A., Balme, S., and Bechelany, M., Biosens. Bioelectron., 2017, vol. 92, pp. 763–769. https://doi.org/10.1016/j.bios.2016.09.071

    Article  CAS  PubMed  Google Scholar 

  311. Tipnis, R., Vaddiraju, S., Jain, F., Burgess, D.J., and Papadimitrakopoulos, F., J. Diabetes Sci. Technol., 2007, vol. 1, no. 2, pp. 193–200. https://doi.org/10.1177/193229680700100209

    Article  PubMed  PubMed Central  Google Scholar 

  312. Zhang, X., Zhao, J., Whitney, A.V., Elam, J.W., and Van Duyne, R.P., J. Am. Chem. Soc., 2006, vol. 128, no. 31, pp. 10304–10309. https://doi.org/10.1021/ja0638760

    Article  CAS  PubMed  Google Scholar 

  313. Kim, Y.W., Sardari, S.E., Meyer, M.T., Iliadis, A.A., Wu, H.C., Bentley, W.E., and Ghodssi, R., Sens. Actuators B, 2012, vol. 163, no. 1, pp. 136–145. https://doi.org/10.1016/j.snb.2012.01.021

    Article  CAS  Google Scholar 

  314. Cabello-Aguilar, S., Balme, S., Abou-Chaaya, A., Bechelany, M., Balanzat, E., Janot, J.M., Pochat-Bohatier, C., Miele, P., and Dejardin, P., Nanoscale, 2013, vol. 5, no. 20, pp. 9582–9586. https://doi.org/10.1039/C3NR03683A

    Article  CAS  PubMed  Google Scholar 

  315. Balme, S., Picaud, F., Manghi, M., Palmeri, J., Bechelany, M., Cabello-Aguilar, S., Abou-Chaaya, A., Miele, P., Balanzat, E., and Janot, J.M., Sci. Rep., 2015, vol. 5, no. 1, ID 10135. https://doi.org/10.1038/srep10135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Thangaraj, V., Lepoitevin, M., Smietana, M., Balanzat, E., Bechelany, M., Janot, J.M., Janot, J.-M., Vasseur, J.-J., Subramanian, S., and Balme, S., Microchim. Acta, 2016, vol. 183, no. 3, pp. 1011–1017. https://doi.org/10.1007/s00604-015-1706-2

    Article  CAS  Google Scholar 

  317. Gorbik, P.P., Poverkhnost’, 2015, no. 7 (22), pp. 297–310.

    Google Scholar 

  318. Kääriäinen, T.O., Kemell, M., Vehkamäki, M., Kääriäinen, M.L., Correia, A., Santos, H.A., Bimbo, L.M., Hirvonen, J., Hoppu, P., George, S.M., and Cameron, D.C., Int. J. Pharm., 2017, vol. 525, no. 1, pp. 160–174. https://doi.org/10.1016/j.ijpharm.2017.04.031

    Article  CAS  PubMed  Google Scholar 

  319. Roeder, J.F., Zeberoff, A.F., Van Buskirk, P.C., Torabi, A., Barton, J., Willman, C., Ghezel-Ayagh, H., and Huang, K., ECS Trans., 2016, vol. 75, no. 6, pp. 195–202. https://doi.org/10.1149/07506.0195ecst

    Article  CAS  Google Scholar 

  320. Guan, D., Ma, L., Pan, D., Li, J., Gao, X., Xie, Y., Qiu, M., and Yuan, C., Electrochim. Acta, 2017, vol. 242, pp. 117–124. https://doi.org/10.1016/j.electacta.2017.05.023

    Article  CAS  Google Scholar 

  321. Roeder, J.F., Golalikhani, M., Zeberoff, A.F., Van Buskirk, P.C., Torabi, A., Barton, J., Willman, C., Ghezel-Ayagh, H., Wen, Y., and Huang, K., ECS Trans., 2017, vol. 78, no. 1, pp. 935–942. https://doi.org/10.1149/07801.0935ecst

    Article  CAS  Google Scholar 

  322. Meng, X., Wang, X., Geng, D., Ozgit-Akgun, C., Schneider, N., and Elam, J.W., Mater. Horiz., 2017, vol. 4, no. 2, pp. 133–154. https://doi.org/10.1039/C6MH00521G

    Article  CAS  Google Scholar 

  323. Liu, Y., Sun, Q., Zhao, Y., Wang, B., Kaghazchi, P., Adair, K.R., Li, R., Zhang, C., Liu, J., Kuo, L.-Y., Hu, Y., Sham, T.-K., Zhang, L., Yang, R., Lu, S., Song, X., and Sun, X., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 37, pp. 31240–31248. https://doi.org/10.1021/acsami.8b06366

    Article  CAS  PubMed  Google Scholar 

  324. Cao, Y., Meng, X., and Li, A., Energy Environ. Mater., 2020, pp. 1–29. https://doi.org/10.1002/eem2.12132

    Article  CAS  Google Scholar 

  325. Henderick, L., Hamed, H., Mattelaer, F., Minjauw, M., Nisula, M., Meersschaut, J., Dendooven, J., Safari, M., Vereecken, P., and Detavernier, C., J. Power Sources, 2021, vol. 497, ID 229866. https://doi.org/10.1016/j.jpowsour.2021.229866

    Article  CAS  Google Scholar 

  326. Ou, K.S., Lin, I.K., Wu, P.H., Huang, Z.K., Chen, K.S., and Zhang, X., MRS Online Proc. Libr., 2009, vol. 1222, ID 214. https://doi.org/10.1557/PROC-1222-DD02-14

    Article  CAS  Google Scholar 

  327. Potts, S.E., Schmalz, L., Fenker, M., Díaz, B., Światowska, J., Maurice, V., Seyeux, A., Marcus, P., Radnóczi, G., Tóth, L., and Kessels, W.M.M., J. Electrochem. Soc., 2011, vol. 158, no. 5, pp. C132–C138. https://doi.org/10.1149/1.3560197

    Article  CAS  Google Scholar 

  328. Laskar, M.R., Jackson, D.H.K., Guan, Y., Xu, S., Fang, S., Dreibelbis, M., Mahanthappa, M.K., Morgan, D., Hamers, R.J., and Kuech, T.F., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 16, pp. 10572–10580. https://doi.org/10.1021/acsami.5b11878

    Article  CAS  PubMed  Google Scholar 

  329. Yang, Q., Yuan, W., Liu, X., Zheng, Y., Cui, Z., Yang, X., Pan, H., and Wu, S., Acta Biomater., 2017, vol. 58, pp. 515–526. https://doi.org/10.1016/j.actbio.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  330. Liu, X., Yang, Q., Li, Z., Yuan, W., Zheng, Y., Cui, Z., Yang, X., Yeung, K.W.K., and Wu, S., Appl. Surf. Sci., 2018, vol. 434, pp. 1101–1111. https://doi.org/10.1016/j.apsusc.2017.11.032

    Article  CAS  Google Scholar 

  331. Yang, F., Chang, R., and Webster, T.J., Int. J. Nanomed., 2019, vol. 14, pp. 9955–9970. https://doi.org/10.2147/IJN.S199093

    Article  CAS  Google Scholar 

  332. Fusco, M.A., Oldham, C.J., and Parsons, G.N., Materials, 2019, vol. 12, no. 4, ID 672. https://doi.org/10.3390/ma12040672

    Article  CAS  PubMed Central  Google Scholar 

  333. Duan, C.L., Deng, Z., Cao, K., Yin, H.F., Shan, B., and Chen, R., J. Vac. Sci. Technol. A, 2016, vol. 34, no. 4, ID 04C103. https://doi.org/10.1116/1.4952401

    Article  CAS  Google Scholar 

  334. Kochetkova, A.S., Sosnov, E.A., Malkov, A.A., Antipov, V.V., Kulikov, N.A., and Malygin, A.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 7, pp. 883–892. https://doi.org/10.1134/S1070427219070024 

    Article  CAS  Google Scholar 

  335. Li, C., Cauwe, M., Yang, Y., Schaubroeck, D., Mader, L., and Op de Beeck, M., Coatings, 2019, vol. 9, no. 9, ID 579. https://doi.org/10.3390/coatings9090579

    Article  CAS  Google Scholar 

  336. Li, Y., Xiong, Y., Yang, H., Cao, K., and Chen, R., J. Mater. Res., 2020, vol. 35, no. 7, pp. 681–700. https://doi.org/10.1557/jmr.2019.331

    Article  CAS  Google Scholar 

  337. Paussa, L., Guzman, L., Marin, E., Isomaki, N., and Fedrizzi, L., Surf. Coat. Technol., 2011, vol. 206, no. 5, pp. 976–980. https://doi.org/10.1016/j.surfcoat.2011.03.101

    Article  CAS  Google Scholar 

  338. Dafinone, M.I., Feng, G., Brugarolas, T., Tettey, K.E., and Lee, D., ACS Nano, 2011, vol. 5, no. 6, pp. 5078–5087. https://doi.org/10.1021/nn201167j

    Article  CAS  PubMed  Google Scholar 

  339. Tsvetkova, M.N. and Malygin, A.A., J. Appl. Chem. USSR, 1986, vol. 59, no. 11, pp. 2279–2281.

    Google Scholar 

  340. Jõgiaas, T., Zabels, R., Tamm, A., Merisalu, M., Hussainova, I., Heikkilä, M., Maendar, H., Kukli, K., Ritala, M., and Leskelä, M., Surf. Coat. Technol., 2015, vol. 282, pp. 36–42. https://doi.org/10.1016/j.surfcoat.2015.10.008

    Article  CAS  Google Scholar 

  341. Doll, G.L., Mensah, B.A., Mohseni, H., and Scharf, T.W., J. Therm. Spray Technol., 2010, vol. 19, nos. 1–2, pp. 510–516. https://doi.org/10.1007/s11666-009-9364-8

    Article  CAS  Google Scholar 

  342. Wang, Z. and Zhao, Q.Z., Surf. Coat. Technol., 2018, vol. 344, pp. 269–275. https://doi.org/10.1016/j.surfcoat.2018.03.036

    Article  CAS  Google Scholar 

  343. Scharf, T.W., Diercks, D.R., Gorman, B.P., Prasad, S.V., and Dugger, M.T., Tribol. Trans., 2009, vol. 52, no. 3, pp. 284–292. https://doi.org/10.1080/10402000802369747

    Article  CAS  Google Scholar 

  344. Kilbury, O.J., Barrett, K.S., Fu, X., Yin, J., Dinair, D.S., Gump, C.J., Weimer, A.W., and King, D.M., Powder Technol., 2012, vol. 221, pp. 26–35. https://doi.org/10.1016/j.powtec.2011.12.021

    Article  CAS  Google Scholar 

  345. Tan, L K., Liu, B., Teng, J.H., Guo, S., Low, H.Y., and Loh, K.P., Nanoscale, 2014, vol. 6, no. 18, pp. 10584–10588. https://doi.org/10.1039/C4NR02451F

    Article  CAS  PubMed  Google Scholar 

  346. Sun, Y., Chai, Z., Lu, X., and Lu, J., Tribol. Int., 2017, vol. 114, pp. 478–484. https://doi.org/10.1016/j.triboint.2017.04.047

    Article  CAS  Google Scholar 

  347. Guay, J.M., Killaire, G., Gordon, P.G., Barry, S.T., Berini, P., and Weck, A., Langmuir, 2018, vol. 34, no. 17, pp. 4998–5010. https://doi.org/10.1021/acs.langmuir.8b00210

    Article  CAS  PubMed  Google Scholar 

  348. Lee, K., Kim, H., Kim, J.H., and Choi, D., Scr. Mater., 2020, vol. 187, pp. 125–129. https://doi.org/10.1016/j.scriptamat.2020.06.007

    Article  CAS  Google Scholar 

  349. Khan, M.R., Kim, H.G., Park, J.S., Shin, J.W., Nguyen, C.T., and Lee, H.B.R., Langmuir, 2020, vol. 36, no. 11, pp. 2794–2801. https://doi.org/10.1021/acs.langmuir.9b03988

    Article  CAS  PubMed  Google Scholar 

  350. Malkov, A.A., Malygin, A.A., Trifonov, S.A., Egorova, I.V., Vikhman, S.V., Brusilovskii, G.L., Silin, V.A., and Kulikov, N.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2009, no. 6 (32), pp. 33–38.

    Google Scholar 

  351. Anisimov, K.S., Malkov, A.A., and Malygin, A.A., Russ. J. Gen. Chem., 2014, vol. 84, no. 12, pp. 2375–2381. https://doi.org/10.1134/S1070363214120032 

    Article  CAS  Google Scholar 

  352. Lichty, P., Wirz, M., Kreider, P., Kilbury, O., Dinair, D., King, D., Steinfeld, A., and Weimer, A.W., Int. J. Appl. Ceram. Technol., 2013, vol. 10, no. 2, pp. 257–265. https://doi.org/10.1111/j.1744-7402.2012.02750.x

    Article  CAS  Google Scholar 

  353. O’Toole, R.J., Buur, P.J., Gump, C.J., Musgrave, C.B., and Weimer, A.W., J. Am. Ceram. Soc., 2020, vol. 103, no. 8, pp. 4101–4109. https://doi.org/10.1111/jace.17079

    Article  CAS  Google Scholar 

  354. Zemtsova, E.G., Monin, A.V., Smirnov, V.M., Semenov, B.N., and Morozov, N.F., Fiz. Mezomekh., 2016, vol. 19, no. 3, pp. 58–68.

    Google Scholar 

  355. Kochetkova, A.S., Efimov, N.Yu., Sosnov, E.A., and Malygin, A.A., Russ. J. Appl. Chem., 2015, vol. 88, no. 1, pp. 110–117. https://doi.org/10.1134/S1070427215010164 

    Article  CAS  Google Scholar 

  356. Grassie, N. and Scott, G., Polymer Degradation and Stabilisation, Cambridge: Cambridge Univ. Press, 1985.

    Google Scholar 

  357. Alongi, J., Carosio, F., and Malucelli, G., Polym. Degrad. Stab., 2014, vol. 106, pp. 138–149. https://doi.org/10.1016/j.polymdegradstab.2013.07.012

    Article  CAS  Google Scholar 

  358. Trifonov, S.A., Sosnov, E.A., and Malygin, A.A., Russ. J. Appl. Chem., 2004, vol. 77, no. 11, pp. 1854–1858. https://doi.org/10.1007/s11167-005-0175-5 

    Article  CAS  Google Scholar 

  359. Huang, G., Liang, H., Wang, X., and Gao, J., Ind. Eng. Chem. Res., 2012, vol. 51, no. 38, pp. 12299–12309. https://doi.org/10.1021/ie300820k

    Article  CAS  Google Scholar 

  360. Apaydin, K., Laachachi, A., Ball, V., Jimenez, M., Bourbigot, S., Toniazzo, V., and Ruch, D., Polym. Degrad. Stab., 2013, vol. 98, no. 2, pp. 627–634. https://doi.org/10.1016/j.polymdegradstab.2012.11.006

    Article  CAS  Google Scholar 

  361. Wang, D., Song, L., Zhou, K., Yu, X., Hu, Y., and Wang, J., J. Mater. Chem. A, 2015, vol. 3, no. 27, pp. 14307–14317. https://doi.org/10.1039/C5TA01720C

    Article  CAS  Google Scholar 

  362. Qiu, X., Li, Z., Li, X., and Zhang, Z., Chem. Eng. J., 2018, vol. 334, pp. 108–122. https://doi.org/10.1016/j.cej.2017.09.194

    Article  CAS  Google Scholar 

  363. D’yakova, A.K., Trifonov, S.A., Sosnov, E.A., and Malygin, A.A., Russ. J. Appl. Chem., 2009, vol. 82, no. 4, pp. 622–629. https://doi.org/10.1134/S107042720904017X 

    Article  Google Scholar 

  364. Feng, J., Xiong, S., Wang, Z., Cui, Z., Sun, S.P., and Wang, Y., J. Membr. Sci., 2018, vol. 550, pp. 246–253. https://doi.org/10.1016/j.memsci.2018.01.003

    Article  CAS  Google Scholar 

  365. Huang, A., Kan, C.-C., Lo, S.-C., Chen, L.-H., Su, D.-Y., Soesanto, J.F., Hsu, C.-C., Tsai, F.-Y., and Tung, K.-L., J. Membr. Sci., 2019, vol. 582, pp. 120–131. https://doi.org/10.1016/j.memsci.2019.03.093

    Article  CAS  Google Scholar 

  366. Singh, A.K., Chou, W.-F., Jia, X., Wang, C.-Y., Fuentes-Hernandez, C., Kippelen, B., and Graham, S., J. Vac. Sci. Technol. A, 2020, vol. 38, no. 3, ID 033203. https://doi.org/10.1116/1.5140665

    Article  CAS  Google Scholar 

  367. Trifonov, S.A., Sosnov, E.A., Belova, Yu.S., Malygin, A.A., Razinkova, N.G., and Savkin, G.G., Russ. J. Appl. Chem., 2007, vol. 80, no. 8, pp. 1413–1418. https://doi.org/10.1134/S1070427207080307 

    Article  CAS  Google Scholar 

  368. Hirvikorpi, T., Vähä-Nissi, M., Mustonen, T., Iiskola, E., and Karppinen, M., Thin Solid Films, 2010, vol. 518, no. 10, pp. 2654–2658. https://doi.org/10.1016/j.tsf.2009.08.025

    Article  CAS  Google Scholar 

  369. Jarvis, K.L., Evans, P.J., and Triani, G., Surf. Coat. Technol., 2018, vol. 337, pp. 44–52. https://doi.org/10.1016/j.surfcoat.2017.12.056

    Article  CAS  Google Scholar 

  370. Su, D.Y., Hsu, C.C., Lai, W.H., and Tsai, F.Y., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 37, pp. 34212–34221. https://doi.org/10.1021/acsami.9b09772

    Article  CAS  PubMed  Google Scholar 

  371. Op de Beeck, M., Verplancke, R., Schaubroeck, D., Li, C., Cuypers, D., Cauwe, M., Vandecasteele, B., Mader, L., Vanhaverbeke, C., O’Callaghan, J., Braeken, D., Andrei, A., Firrincieli, A., Ballini, M., Kundu, A., Fahmy, A., Patrick, E., Maghari, N., Bashirullah, R., and De Baets, J., Abstracts of Papers, Advanced Packaging for Medical Microelectronics, 2019 Advanced Technology Workshop, San Diego, California, Jan. 22–23, 2019. http://hdl.handle.net/1854/LU-8628164

  372. Rychkov, A.A., Trifonov, S.A., Kuznetsov, A.E., Sosnov, E.A., Rychkov, D.A., and Malygin, A.A., Russ. J. Appl. Chem., 2007, vol. 80, no. 3, pp. 461–465. https://doi.org/10.1134/S1070427207030214 

    Article  CAS  Google Scholar 

  373. Patent RU 2477540 С2, Publ. 2013.

  374. Radyuk, E.A., Sosnov, E.A., Malygin, A.A., Rychkov, A.A., and Kuznetsov, A.E., Russ. J. Appl. Chem., 2019, vol. 92, no. 8, pp. 1128–1134. https://doi.org/10.1134/S1070427219080111 

    Article  CAS  Google Scholar 

  375. Tsipanova, A.S., Sosnov, E.A., Kuznetsov, A.E., Rychkov, A.A., and Malygin, A.A., Russ. J. Gen. Chem., 2021, vol. 91, no. 6, pp. 1073–1081. https://doi.org/10.1134/S1070363221060141 

    Article  Google Scholar 

Download references

Funding

The review preparation was supported by the Russian Foundation for Basic Research (project no. 20-13-50088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sosnov.

Ethics declarations

A.A. Malygin is the Deputy Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. The other authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 9, pp. 1104#x2013;1137, January, 2021 https://doi.org/10.31857/S0044461821090024

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnov, E.A., Malkov, A.A. & Malygin, A.A. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century. Russ J Appl Chem 94, 1189–1215 (2021). https://doi.org/10.1134/S1070427221090020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090020

Keywords:

Navigation