Skip to main content
Log in

Catalytic Activity of Alumina-Modified Silica Gels in Methanol Conversion to Dimethyl Ether

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Methanol conversion to dimethyl ether using alumina-modified silica gel based adsorbents was studied. ASM, ASM VS, BASF KC-Trockenperlen H, BASF KC-Trockenperlen WS, and NIAP-AOS adsorbents used in industrial adsorption installations for natural gas treatment were tested. The composition and structural characteristics of the commercial adsorbents were characterized by X-ray fluorescence and X-ray diffraction analysis and by low-temperature nitrogen adsorption and were correlated with the catalytic activity. The dependences of the concentration of the dimethyl ether formed on the reaction temperature and carrier gas flow rate through the adsorbents were determined. Methanal, diethyl ether, acetone, methyl acetate, and ethanol were identified as by-products of methanol conversion on the tested adsorbents. The results of thermocatalytic transformations of methanol on the adsorbents demonstrated good prospects for using ASM silica gel modified with 4.6% aluminum oxide for natural gas treatment in industry; its use allows reduction of the methanol emission to the atmosphere. At 290°С and flow rate of nitrogen containing 197 ± 3 mg L–1 methanol of 1200 mL min–1, the methanol conversion on ASM 1 adsorbent reached 91 wt %, and the dimethyl ether yield reached 49 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yang, M., Zhao, J., Zheng, J.-N., and Song, Y., Appl. Energy, 2019, vol. 256, ID 113878. https://doi.org/10.1016/j.apenergy.2019.113878

    Article  CAS  Google Scholar 

  2. Beshentseva, S.A., Vestn. Kibernet., 2012, no. 11, pp. 40–44.

    Google Scholar 

  3. Pohanka, M., Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub., 2016, vol. 160, no. 1, pp. 54–63. https://doi.org/10.5507/bp.2015.023

    Article  PubMed  Google Scholar 

  4. Tkachenko, I.G., Shablya, S.G., Shatokhin, A.A., Geras’kin, V.G., Malakhova, O.V., and Zavalinskaya, I.S., Gaz. Prom–st., 2017, vol. 747, no. 1, pp. 36–39.

    Google Scholar 

  5. Hattori, H. and Ono, Y., Catalysts and Catalysis for Acid–Base Reactions. Metal Oxides in Heterogeneous Catalysis, Elsevier, 2018, pp. 133–209.

    Article  Google Scholar 

  6. Aboul-Fotouh, S.M.K., J. Fuel Chem. Technol., 2013, vol. 41, no. 9, pp. 1077–1084. https://doi.org/10.1016/S1872-5813(13)60045-6

    Article  Google Scholar 

  7. Sabour, B., Peyrovi, M. H., Hamoule, T., and Rashidzadeh, M., J. Ind. Eng. Chem., 2014, vol. 20, no. 1, pp. 222–227. https://doi.org/10.1016/j.jiec.2013.03.044

    Article  CAS  Google Scholar 

  8. Peinado, C., Liuzzi, D., Ladera-Gallardo, R.M., Retuerto, М., Ojeda, M., Peña, M.A., and Rojas, S., Sci. Rep., 2020, vol. 10, no. 1, pp. 1–12. https://doi.org/10.1038/s41598-020-65296-3

    Article  CAS  Google Scholar 

  9. Macina, D., Piwowarska, Z., Tarach, K., Góra-Marek, K., Ryczkowski, J., and Chmielarz, L., Mater. Res. Bull., 2016, vol. 74, pp. 425–435. https://doi.org/10.1016/j.materresbull.2015.11.018

    Article  CAS  Google Scholar 

  10. Aloise, A., Marino, A., Dalena, F., Giorgianni, G., Migliori, M., Frusteri, L., Cannilla, C., Bonura, G., Frusteri, F., and Giordano, G., Micropor. Mesopor. Mater., 2020, vol. 302, no. 110198, pp. 1–8. https://doi.org/10.1016/j.micromeso.2020.110198

    Article  CAS  Google Scholar 

  11. Zeng, L., Wang, Y., Mou, J., Liu, F., Yang, C., Zhao, T., Wang, X., and Cao, J., Int. J. Hydrogen Energy, 2020, vol. 45, no. 33, pp. 16500–16508. https://doi.org/10.1016/j.ijhydene.2020.04.115

    Article  CAS  Google Scholar 

  12. Catizzone, E., Migliori, M., Aloise, A., Lamberti, R., and Giordano, G., J. Chem., 2019, pp. 1–9. https://doi.org/10.1155/2019/3084356

    Article  CAS  Google Scholar 

  13. Dai, W., Kong, W., Wu, G., Li, N., Li, L., and Guan, N., Catal. Commun., 2011, vol. 12, no. 6, pp. 535–538. https://doi.org/10.1016/j.catcom.2010.11.019

    Article  CAS  Google Scholar 

  14. Elamin, M.M., Muraza, O., Malaibari, Z., Ba, H., Nhut, J.M., and Pham-Huu, C., Chem. Eng. J., 2015, vol. 274, pp. 113–122. https://doi.org/10.1016/j.cej.2015.03.118

    Article  CAS  Google Scholar 

  15. Bateni, H. and Able, C., Catal. Ind., 2019, vol. 11, no. 1, pp. 7–33. https://doi.org/10.1134/S2070050419010045 

    Article  Google Scholar 

  16. Sung, D.M., Kim, Y.H., Park, E.D., and Yie, J.E., Res. Chem. Intermed., 2010, vol. 36, nos. 6–7, pp. 653–660. https://doi.org/10.1007/s11164-010-0201-y

    Article  CAS  Google Scholar 

  17. Mandal, A., Prakash, M., Kumar, R.M., Parthasarathi, R., and Subramanian, V., J. Phys. Chem. A, 2010, vol. 114, no. 6, pp. 2250–2258. https://doi.org/10.1021/jp909397z

    Article  CAS  PubMed  Google Scholar 

  18. Temerdashev, Z.A., Rudenko, A.V., Kolychev, I.A., and Kostina, A.S., Ekol. Prom–st. Ross., 2019, vol. 23, no. 11, pp. 4–9. https://doi.org/10.18412/1816-0395-2020-8-17-21

    Article  Google Scholar 

  19. Khadzhiev, S.N., Magomedova, M.V., and Peresypkina, E.G., Petrol. Chem., 2014, vol. 54, no. 4, pp. 245–269. https://doi.org/10.7868/S0028242114040054 

    Article  CAS  Google Scholar 

  20. DeWilde, J.F., Chiang, H., Hickman, D.A., Ho, C.R., and Bhan, A., ACS Catal., 2013, vol. 3, no. 4, pp. 798–807. https://doi.org/10.1021/cs400051k

    Article  CAS  Google Scholar 

  21. Phung, T.K. and Busca, G., Chem. Eng. J., 2015, vol. 272, pp. 92–101. https://doi.org/10.1016/j.cej.2015.03.008

    Article  CAS  Google Scholar 

  22. Kondaurov, S.Yu., Artemova, I.I., Nikisheva, M.I., Kruchinin, M.M., Shaikhutdinov, A.Z., and Zolotovskii, B.P., Gaz. Prom–st., 2011, no. 12, pp. 26–29.

    Google Scholar 

  23. Ivanova, Yu.A., Temerdashev, Z.A., Kolychev, I.A., and Rudenko, A.V., Anal. Kontr., 2020, vol. 24, no. 3, pp. 195–200. https://doi.org/10.15826/analitika.2020.24.3.002

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Equipment of the Center for Shared Use Environmental-Analytical Center of the Kuban State University was used.

Funding

The studies were performed within the framework of the government assignment of the Ministry of Science and Higher Education of the Russian Federation, project no. FZEN-2020-0022.

Author information

Authors and Affiliations

Authors

Contributions

Z.A. Temerdashev put forward the main ideas and participated in the manuscript writing; A.S. Kostina performed experimental studies, prepared review of publications on the subject of the paper, and participated in the data discussion and systematization and in the manuscript preparation; A.V. Rudenko and I.A. Kolychev participated in problem setting, in catalytic experiments, and in the data discussion and systematization; A.M. Vasil’ev studied the adsorbents by methods of thermal, X-ray fluorescence, and X-ray diffraction analysis.

Corresponding author

Correspondence to Z. A. Temerdashev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 570–579, January, 2021 https://doi.org/10.31857/S0044461821050042

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temerdashev, Z.A., Kostina, A.S., Rudenko, A.V. et al. Catalytic Activity of Alumina-Modified Silica Gels in Methanol Conversion to Dimethyl Ether. Russ J Appl Chem 94, 576–585 (2021). https://doi.org/10.1134/S1070427221050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221050049

Keywords:

Navigation