Skip to main content
Log in

Enhanced Optical and Electrical Properties of Graphene Oxide-Silver Nanoparticles Nanocomposite Film by Thermal Annealing in the Air

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Here, we report the enhanced optical and electrical properties of graphene oxide-silver nanoparticles (GO-AgNPs) nanocomposite due to thermal annealing in air at different temperatures (150, 250, and 350°C). Our findings show that the optical properties of the GO-AgNPs film strongly depend on the annealing temperature. With an increase in annealing temperature, the optical absorption band and photoluminescence (PL) band are monotonically shifted towards a longer wavelength with a slight increase in absorbance. Interestingly, annealing of the nanocomposite film at 350°C in the air results in the nitrogen-doping from air into GO lattice. Unlike the PL bands in the near-ultraviolet (UV) range in cases of GO-AgNPs annealed at 150 and 250°C, this film exhibits pronounced multiple PL bands in the visible range, which are attributed to optical transitions associated with the localized nitrogen defects incorporated from air under thermal annealing and charge transfer between AgNPs and carbon. Mechanisms of the observed optical properties are also discussed. Furthermore, thermal annealing of the film also affects its electrical properties. The sheet resistance of the film reduces with the increase of annealing temperature and its lowest value ~ 21 Ω/□ with transmittance ~ 82% at 550 nm is achieved at 350°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A., Nat. Photonics, 2010, vol. 4, p. 611. https://doi.org/10.1038/nphoton.2010.186

    Article  CAS  Google Scholar 

  2. Singh, R.S., Nalla, V., Chen, W., Wee, A.T.S., and Ji, W., ACS Nano, 2011, vol. 5, no. 7, p. 5969. https://doi.org/10.1021/nn201757

    Article  CAS  PubMed  Google Scholar 

  3. Singh, R.S., Li, D., Xiong, Q., Santoso, I., Yu, X., Chen, W., Rusydi, A., and Wee, A.T.S., Carbon, 2016, vol. 106, p. 330. https://doi.org/10.1016/j.carbon.2016.05.026

    Article  CAS  Google Scholar 

  4. Singh, R.S., Nalla, V., Chen, W., Ji, W., and Wee, A.T.S, Appl. Phys. Lett., 2012, vol. 100, no. 9, p. 093116. https://doi.org/10.1063/1.3692107

    Article  CAS  Google Scholar 

  5. Singh, R.S., Gautam, A., and Rai, V., Front. Mater. Sci., 2019, vol.13, no. 3 , p. 217. https://doi.org/10.1007/s11706-019-0465-0

    Article  Google Scholar 

  6. Singh, R.S., Wang, X., Chen, W., and Wee, A.T.S, Appl.Phys. Lett., 2012, vol. 101, no. 18 , p. 183105. https://doi.org/10.1063/1.4765656

    Article  CAS  Google Scholar 

  7. Santoso, I., Singh, R.S., Gogoi, P.K., Asmara, T.C., Wei, D., Chen, W., Wee, A.V.S, Pereira, V.M., and Rusydi, A., Phys. Rev. B, 2014, vol. 89, no. 7, p. 075134. https://doi.org/10.1103/PhysRevB.89.075134

    Article  CAS  Google Scholar 

  8. Singh, A.K., Iqbal, M.W., Singh, V.K., Iqbal, M.Z., Lee, J.H., Chun, S.-H., Shin, K., and Eom, J., J. Mater. Chem. 2012, vol. 22, no. 30, p. 15168-15174. https://doi.org/10.1039/C2JM32716C

    Article  CAS  Google Scholar 

  9. Andleeb, S., Eom, J., Naz, N.R., and Singh, A.K., J. Mater. Chem. C, 2017, vol. 5, no. 32, p. 8308. https://doi.org/10.1039/C7TC01736G

    Article  CAS  Google Scholar 

  10. Chandrashekar, B.N., Deng, B., Smitha, A.S., Chen, Y., Tan, C., Zhang, H., Peng, H., and Liu, Z., Adv. Mater., 2015, vol. 27, no. 35, p. 5210. https://doi.org/10.1002/adma.201502560

    Article  CAS  PubMed  Google Scholar 

  11. Gokus, T., Nair, R., Bonetti, A., Bohmler, M., Lombardo, A., Novoselov, K., Geim, A., Ferrari, A., and Hartschuh, A., ACS Nano, 2009, vol. 3, no. 12, p. 3963. https://doi.org/10.1021/nn9012753

    Article  CAS  PubMed  Google Scholar 

  12. Gao, W., The Chemistry of Graphene Oxide. In Graphene Oxide, New York: Springer, 2015. https://doi.org/10.1007/978-3-319-15500-5_3

    Book  Google Scholar 

  13. Rai, V., Tiwari, N., Rajput, M., Joshi, S.M., Nguyen, A.C., and Mathews, N., Electrochim. Acta, 2017, vol. 255, p. 63. https://doi.org/10.1016/j.electacta.2017.09.08

    Article  CAS  Google Scholar 

  14. Gautam, A. and Ram, S., Mater. Chem. Phys., 2010, vol. 119, no. 1–2, p. 266. https://doi.org/10.1016/j.matchemphys.2009.08.050

    Article  CAS  Google Scholar 

  15. Gautam, A. and Ram, S., J. Alloys Compd., 2008, vol. 463, no. 1–2, p. 428. https://doi.org/10.1016/j.jallcom.2007.09.051

    Article  CAS  Google Scholar 

  16. Kumar, P.V., Bardhan, N.M., Tongay, S., Wu, J., Belcher, A.M., and Grossman, J.C., Nat. Chem., 2014, vol. 6, no. 2, p. 151. https://doi.org/10.1038/nchem.1820

    Article  CAS  PubMed  Google Scholar 

  17. Chien, C.T., Li, S.S., Lai, W.J., Yeh, Y.C., Chen, H.A., Chen, I.S., Chen, L.C., Chen, K.H., Nemoto, T., and Isoda, S., Angew. Chem. Int. Ed., 2012, vol. 51, no. 27, p. 6662. https://doi.org/10.1002/anie.20120047

    Article  CAS  Google Scholar 

  18. Cote, L.J., Cruz-Silva, R., and Huang, J., J. Am. Chem. Soc., 2009, vol. 131, no. 31, p. 11027. https://doi.org/10.1021/ja902348k

    Article  CAS  PubMed  Google Scholar 

  19. Zhuo, Q., Gao, J., Peng, M., Bai, L., Deng, J., Xia, Y., Ma, Y., Zhong, J., and Sun, X., Carbon, 2013, vol. 52, no. , p. 559. https://doi.org/10.1016/j.carbon.2012.10.01

    Article  CAS  Google Scholar 

  20. Kononenko, V., Kunert, H., Manak, I., and Ushakov, D., J. Appl. Spectrosc., 2003, vol. 70, no. 1, p. 115. https://doi.org/10.1023/A:1023236912043

    Article  CAS  Google Scholar 

  21. Singh, R. S. and Solanki, A., Phys. Lett. A, 2016, vol. 380, no. 11-12, p. 1201. https://doi.org/10.1016/j.physleta.2016.01.029

    Article  CAS  Google Scholar 

  22. Singh, R.S., Mater. Res. Exp., 2016, vol. 3, no. 7, p. 075014. https://doi.org/10.1088/2053-1591/3/7/075014

    Article  CAS  Google Scholar 

  23. Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M., and Ohba, M., Carbon, 2004, vol. 42, no. 14, p. 2929. https://doi.org/10.1016/j.carbon.2004.07.003

    Article  CAS  Google Scholar 

  24. Baby, T.V. and Ramaprabhu, S., J. Mater. Chem., 2011, vol. 21, no. 26, p. 9702. https://doi.org/10.1039/C0JM04106H

    Article  Google Scholar 

  25. Abdolhosseinzadeh, S., Asgharzadeh, H., and Kim, H.S., Sci. Rep., 2015, vol. 5, p. 10160. https://doi.org/10.1038/srep10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, X.-F., Qin, J., Xia, P.-F., Guo, B.-B., Yang, C.-M., Song, C., Wang, S.-G., Chem. Eng.J., 2015, vol. 281, p. 53. https://doi.org/10.1016/j.cej.2015.06.05

    Article  CAS  Google Scholar 

  27. Stankovich, S., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., Carbon, 2006, vol. 44, no. 15, p. 3342. https://doi.org/10.1016/j.carbon.2006.06.004

    Article  CAS  Google Scholar 

  28. Kumar, M.P., Kesavan, T., Kalita, G., Ragupathy, P., Narayanan, T.N., and Pattanayak, D.K., RSC Adv., 2014, vol. 4, no. 73, p. 38689. https://doi.org/10.1039/C4RA04927

    Article  CAS  Google Scholar 

  29. Xu, X., Yuan, T., Zhou, Y., Li, Y., Lu, J., Tian, X., Wang, D., and Wang, J., Int. J. Hydrogen Energy, 2014, vol. 39, no. 28, p. 16043. https://doi.org/10.1016/j.ijhydene.2013.12.07

    Article  CAS  Google Scholar 

  30. Gautam, A., Singh, G., and Ram, S., Synth. Met., 2007, vol. 157, no. 1, p. 5. https://doi.org/10.1016/j.synthmet.2006.11.009

    Article  CAS  Google Scholar 

  31. Cai, D. and Song, M., J. Mater. Chem., 2007, vol. 17, no. 35, p. 3678. https://doi.org/10.1039/B705906J

    Article  CAS  Google Scholar 

  32. Gomez De Arco, L., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., and Zhou, C., ACS Nano, 2010, vol. 4, no. 5, p. 2865. https://doi.org/10.1021/nn901587

    Article  CAS  PubMed  Google Scholar 

  33. Wang, X., Zhi, L., and Müllen, K., Nano Lett., 2008, vol. 8, no. 1, p. 323. https://doi.org/10.1021/nl072838r

    Article  CAS  PubMed  Google Scholar 

  34. Sa, K. and Mahanandia, P., Thin Solid Films, 2019, vol. 692, p. 137594. https://doi.org/10.1016/j.tsf.2019.137594

    Article  CAS  Google Scholar 

  35. King, P.J., Khan, U., Lotya, M., De, S., and Coleman, J.N., ACS Nano, 2010, vol. 4, no. 7, p. 4238. https://doi.org/10.1021/nn100542z

    Article  CAS  PubMed  Google Scholar 

  36. Jo, K., Lee, T., Choi, H.J., Park, J.H., Lee, D.J., Lee, D.W., and Kim, B.-S., Langmuir, 2011, vol. 27, no. 5, p. 2014. https://doi.org/10.1021/la104420p

    Article  CAS  PubMed  Google Scholar 

  37. Wang, T., Jing, L.-C., Zhu, Q., Ethiraj, A.S., Tian, Y., Zhao, H., Yuan, X.-T., Wen, J.-G., Li, L.-K., and Geng, H.-Z., Appl. Surf. Sci., 2020, vol. 500, p. 143997. https://doi.org/10.1016/j.apsusc.2019.14399

    Article  CAS  Google Scholar 

  38. Meenakshi, P., Karthick, R., Selvaraj, M., and Ramu, S., Sol. Energy Mater. Sol. Cells, 2014, vol. 128, p. 264. https://doi.org/10.1016/j.solmat.2014.05.013

    Article  CAS  Google Scholar 

  39. Zhang, Y., Bai, S., Chen, T., Yang, H., and Guo, X., Mater. Res. Exp., 2020, vol. 7, no. 1, ID 016413. https://doi.org/10.1088/2053-1591/ab6262

    Article  CAS  Google Scholar 

  40. Chae, W.H., Sannicolo, T., and Grossman, J.C., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 15, p. 17909. https://doi.org/10.1021/acsami.0c03587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge O P Jindal University, Raigarh, India, and the National Institute of Technology Kurukshetra (Haryana), India for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sevak Singh.

Ethics declarations

The authors decalre confirm that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.S., Rasheed, A., Gautam, A. et al. Enhanced Optical and Electrical Properties of Graphene Oxide-Silver Nanoparticles Nanocomposite Film by Thermal Annealing in the Air. Russ J Appl Chem 94, 402–409 (2021). https://doi.org/10.1134/S1070427221030186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221030186

Keywords:

Navigation