Skip to main content
Log in

Fusibility of Agricultural Plant Waste Ash under the Conditions of High-Temperature Processing

  • Recycling of Renewable Raw Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2021

This article has been updated

Abstract

Agricultural plant wastes such as wheat straw, rice hulls, and sunflower-seed husks were characterized experimentally. The chemical composition of the ash formed from these wastes at various temperatures was determined by energy-dispersive X-ray microanalysis, X-ray diffraction analysis, and IR spectroscopy. The chemical composition of mineral components of the agricultural plant waste ash varies, but the prevalent components are CaO, SiO2, and K2O. Thermodynamic calculations show that SiO2 prevails in rice hull ash; K2Si2O5 and Ca3Si2O7, in wheat straw ash; and potassium compounds (K2O, K2SiO3, KCl, K2SO4), in sunflower-seed husk ash. The ash melting temperatures were determined by the method of characteristic temperatures. No clear correlation was revealed between the melting temperature and alkali metal content of the ash. The main parameters of slag formation such as base–acid ratio, slag viscosity index, and fouling coefficient were calculated. Wheat straw ash and sunflower-seed husk ash, in contrast to rice hull ash, tend to slagging and fouling of reactor walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Change history

REFERENCES

  1. Namsaraev, Z.B., Gotovtsev, P.M., Komova, A.V., and Vasilov, R.G., Renew. Sustain. Energ. Rev., 2018, vol. 81, pp. 625–634. https://doi.org/10.1016/j.rser.2017.08.045

    Article  Google Scholar 

  2. Hupa, M., Karlström, O., and Vainio, E., Proc. Combust. Inst., 2017, vol. 36, no. 1, pp. 113−134. https://doi.org/10.1016/j.proci.2016.06.152

    Article  CAS  Google Scholar 

  3. Kislov, V.M., Zholudev, A.F., Kislov, M.B., and Salgansky, E.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 1, pp. 57–63. https://doi.org/10.1134/S1070427219010087 

    Article  CAS  Google Scholar 

  4. Molino, A., Chianese, S., and Musmarra, D., J. Energy Chem., 2016, vol. 25, no. 1, pp. 10–25. https://doi.org/10.1016/j.jechem.2015.11.005

    Article  Google Scholar 

  5. Niu, Y., Tan, H., and Hui, S., Prog. Energy Combust. Sci., 2016, vol. 52, pp. 1–61. https://doi.org/10.1016/j.pecs.2015.09.003

    Article  Google Scholar 

  6. Tsvetkov, M.V., Podlesniy, D.N., Freyman, V.M., Tsvetkova, Yu.Yu., Salganskaya, M.V., Zyukin, I.V., Zaichenko, A.Yu., and Salgansky, E.A., Russ. J. Appl. Chem., 2020, vol. 93, no. 6, pp. 881–887. https://doi.org/10.1134/S1070427220060154 

    Article  CAS  Google Scholar 

  7. Tsvetkov, M.V., Podlesnii, D.N., Freiman, V.M., Salgansky, E.A., Tsvetkova, Yu.Yu., Zyukin, I.V., Zaichenko, A.Yu., and Salganskaya, M.V., Russ. J. Phys. Chem. B, 2020, vol. 14, no. 4, pp. 647–653. https://doi.org/10.1134/S1990793120040260 

    Article  CAS  Google Scholar 

  8. Lindberg, D., Backman, R., Chartrand, P., and Hupa, M., Fuel Process. Technol., 2013, vol. 105, pp. 129–141. https://doi.org/10.1016/j.fuproc.2011.08.008

    Article  CAS  Google Scholar 

  9. Mlonka-Mędrala, A., Magdziarz, A., Gajek, M., Nowińska, K., and Nowak, W., Fuel, 2020, vol. 261, p. 116421. https://doi.org/10.1016/j.fuel.2019.116421

    Article  CAS  Google Scholar 

  10. Toledo, M., Rosales, C., Silvestre, C., and Caro, S., Int. J. Hydrogen Energy, 2016, vol. 41, no. 46, pp. 21131–21139. https://doi.org/10.1016/j.ijhydene.2016.09.120

    Article  CAS  Google Scholar 

  11. Guerrero, F., Arriagada, A., Muñoz, F., Silva, P., Ripoll, N., and Toledo, M., Fuel, 2020, vol. 289, p. 119756. https://doi.org/10.1016/j.fuel.2020.119756

    Article  CAS  Google Scholar 

  12. Dorofeenko, S.O. and Polianczyk, E.V., Int. J. Hydrogen Energy, 2019, vol. 44, no. 57, pp. 30039–30052. https://doi.org/10.1016/j.ijhydene.2019.09.208

    Article  CAS  Google Scholar 

  13. Lutsenko, N.A. and Levin, V.A., J. Phys. Conf. Ser., 2017, vol. 894, pp. 1–7. https://doi.org/10.1088/1742-6596/894/1/012054

    Article  CAS  Google Scholar 

  14. Ibraeva, K., Tabakaev, R., Yazykov, N., Rudmin, M., Dubinin, Y., and Zavorin, A., Fuel, 2021, vol. 285, p. 119240. https://doi.org/10.1016/j.fuel.2020.119240

    Article  CAS  Google Scholar 

  15. Trusov, B.G., TERRA program system for modeling of phase and chemical equilibria at high temperatures, III Mezhdunarodnyi simpozium “Gorenie i plazmokhimiya” (III Int. Symp. “Combustion and Plasma Chemistry”), Almaty: Kaz. Nats. Univ., 2005, pp. 24–26.

    Google Scholar 

  16. Pronobis, M., Biomass Bioenergy, 2005, vol. 28, no. 4, pp. 375–383. https://doi.org/10.1016/j.biombioe.2004.11.003

    Article  CAS  Google Scholar 

  17. Li, Q.H., Zhang, Y.G., Meng, A.H., Li, L., and Li, G.X., Fuel Process. Technol., 2013, vol. 107, pp. 107–112. https://doi.org/10.1016/j.fuproc.2012.08.012

    Article  CAS  Google Scholar 

  18. Song, Y.C., Li, Q.T., Li, F.Z., Wang, L.S., Hu, C.C., Feng, J., and Li, W.Y., Fuel, 2019, vol. 239, pp. 365–372. https://doi.org/10.1016/j.fuel.2018.11.023

    Article  CAS  Google Scholar 

  19. Li, F., Yu, B., Li, J., Wang, Z., Guo, M., Fan, H., Wang, T., and Fang, Y., Renew. Energy, 2020, vol. 145, pp. 2286–2295. https://doi.org/10.1016/j.renene.2019.07.141

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The elemental composition of agricultural plant waste and the microstructure and composition of ash were determined by staff members of the Analytical Center of Shared Use at the Institute of Problems of Chemical Physics, Russian Academy of Sciences, Senior Engineer G.V. Guseva and Senior Researcher, Cand. Sci. (Phys.-Math.) N.N. Dremova. The X-ray diffraction analysis and interpretation of X-ray diffraction patterns were performed at the Laboratory of Structural Chemistry by D.V. Korchagin and G.V. Shilov. IR spectroscopic analysis was performed at the Laboratory of Engineering of Materials for Solid-State Devices P.S. Barbashova.

Funding

The study was financially supported by the Russian Foundation for Basic Research within the framework of research project no. 19-08-00244 and by government assignment no. 0089-2019-0018, state registry no. АААА-А19-119-022690098-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tsvetkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 371–379, January, 2021 https://doi.org/10.31857/S0044461821030129

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkov, M.V., Podlesnyi, D.N., Zaichenko, A.Y. et al. Fusibility of Agricultural Plant Waste Ash under the Conditions of High-Temperature Processing. Russ J Appl Chem 94, 354–361 (2021). https://doi.org/10.1134/S1070427221030125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221030125

Keywords:

Navigation