Skip to main content
Log in

Oxidative Conversion of Wood Gasification Products in a Mixing Reactor

  • Recycling of Renewable Raw Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The results of thermodynamic calculations and experimental data on conversion of wood gasification tars in pyrolysis gas to tar-free fuel gas by partial oxidation with air are reported. The rate of oxygen feeding into the converter, expressed via oxygen excess J, was used as the main controlling parameter of the conversion. The calculation shows that, under the optimum conversion conditions (J = 0.45), the tars are converted virtually completely to gaseous products that are not inferior to the starting substances in the heat of combustion and have approximately 3 times larger volume. In the experiments, because of the effect of lateral heat loss, at the air feeding rate corresponding to J = 0.45–0.50, the temperature is approximately 400°С lower; therefore, the tar conversion reached only 80%. The heat of combustion of the gaseous products after the conversion was 20–30% lower than that of the initial gaseous gasification products, and the volume of the gaseous conversion products increased by a factor of 2.5–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Richardson, Y., Blin, J., and Julbe, A., Prog. Energy Combust. Sci., 2012, vol. 38, no. 6, pp. 765–781. https://doi.org/10.1016/j.pecs.2011.12.001

    Article  CAS  Google Scholar 

  2. Shen, Y. and Yoshikawa, K., Renew. Sustain. Energy Rev., 2013, vol. 21, pp. 371–392. https://doi.org/10.1016/j.rser.2012.12.062

    Article  CAS  Google Scholar 

  3. Asadullah, M., Renew. Sustain. Energy Rev., 2014, vol. 40, pp. 118–132. https://doi.org/10.1016/j.rser.2014.07.132

    Article  CAS  Google Scholar 

  4. Donskoi, I.G., Russ. J. Appl. Chem., 2020, vol. 93, no. 4, pp. 519–526. https://doi.org/10.1134/S1070427220040060 

    Article  CAS  Google Scholar 

  5. Pérez, J.F., Melgar, A., and Benjumea, P.N., Fuel, 2012, vol. 96, no. 6, pp. 487–496. https://doi.org/10.1016/j.fuel.2012.01.064

    Article  CAS  Google Scholar 

  6. Rios, M.L.V., González, A.M., Lora, E.E.S., and del Olmo, O.A.A., Biomass Bioenergy, 2018, vol. 108, no. 1, pp. 345–370. https://doi.org/10.1016/j.biombioe.2017.12.002

    Article  CAS  Google Scholar 

  7. Heidenreich, S. and Foscolo, P.U., Prog. Energy Combust. Sci., 2015, vol. 46, pp. 72–95. https://doi.org/10.1016/j.pecs.2014.06.002

    Article  Google Scholar 

  8. Hasler, P.H. and Nussbaumer, T., Biomass Bioenergy, 1999, vol. 16, no. 6, pp. 385–395. https://doi.org/10.1016/S0961-9534(99)00018-5

    Article  CAS  Google Scholar 

  9. Kislov, V.M., Zholudev, A.F., Kislov, M.B., and Salgansky, E.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 1, pp. 57–63. https://doi.org/10.1134/S1070427219010087 

    Article  CAS  Google Scholar 

  10. Vershinina, K., Shlegel, N., and Strizhak, P., Combust. Sci. Technol., 2019. https://doi.org/10.1080/00102202.2019.1684908

  11. de Sales, C., Ap, V.B., Maya, D.M.Y., Lora, E.E.S., Jaén, R .L., Reyes, A.M.M., González, A.M., Andrade, R.V., and Martínez, J.D., Energy Convers. Manag., 2017, vol. 145, pp. 314–323. https://doi.org/10.1016/j.enconman.2017.04.101

    Article  CAS  Google Scholar 

  12. Su, Y., Luo, Y., Chen, Y., Wu, W., and Zhang, Y., Fuel Process. Technol., 2011, vol. 92, no. 8, pp. 1513–1524. https://doi.org/10.1016/j.fuproc.2011.03.013

    Article  CAS  Google Scholar 

  13. Wu, W.G., Luo, Y.H., Chen, Y., Su, Y., Zhang, Y.L., Zhao, S.H., and Wang, Y., Energy Fuels, 2011, vol. 25, no. 6, pp. 2721–2729. https://doi.org/10.1002/ente.201500159

    Article  CAS  Google Scholar 

  14. Glazov, S.V., Kislov, V.M., Razmyslov, A.V., and Salganskaya, M.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 7, pp. 1020–1029. https://doi.org/10.1134/S107042721907019X 

    Article  CAS  Google Scholar 

  15. Salgansky, E.A., Kislov, V.M., Glazov, S.V., and Salganskaya, M.V., J. Combust., 2016, vol. 2016, ID 9637082. https://doi.org/10.1155/2016/9637082

    Article  CAS  Google Scholar 

  16. Glazov, S.V., Theor. Found. Chem. Eng., 2019, vol. 53, no. 3, pp. 378–388. https://doi.org/10.1134/S0040579519020052

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The elemental composition of pyrolysis tar was determined at the Analytical Center of Shared Use, Institute of Problems of Chemical Physics, Russian Academy of Sciences by Senior Engineer G.V. Guseva.

Funding

The study was financially supported by government assignment no. 0089-2019-0018, state registry no. АААА-А19-119-022690098-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kislov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 363–370, January, 2021 https://doi.org/10.31857/S0044461821030117

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, V.M., Glazov, S.V., Salganskaya, M.V. et al. Oxidative Conversion of Wood Gasification Products in a Mixing Reactor. Russ J Appl Chem 94, 347–353 (2021). https://doi.org/10.1134/S1070427221030113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221030113

Keywords:

Navigation