Skip to main content
Log in

Study on Oxidative Desulfurization of Simulated Oil Catalyzed With Glycine Modified Phosphotungstic Acid

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A catalyst (PWG) with glycine modified phosphotungstic acid was synthesized, and used in the process of oxidative desulfurization. FT-IR, XRD and SEM were used to perform the characteristic of PWG particle. And then, the desulfurization of simulated oil was tested by adding PWG, acetonitrile and hydrogen peroxide in it with synergistic reaction. While the mount of extractant (V(acetonitrile) = 0.5 mL), oxidant ([O]/[S] = 5 : 1) and catalyst (m = 40 mg) was demanded to reach a high conversion of DBT (99%) at 40°C for 3 h. And the catalyst could be recycled and reused for seven times with the catalytic efficiency had an unnoticeable decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Liang, W.D., Zhang, S., Li, H.F., and Zhang, G.D., Fuel. Process. Technol., 2013, vol. 109, pp. 27–31. https://doi.org/10.1016/j.fuproc.2012.09.034

    Article  CAS  Google Scholar 

  2. Zeng, X.Y., Xiao, X.Y., Li, Y., et al., Appl. Catal. B-Environ., 2017, vol. 209, pp. 98–109. https://doi.org/10.1016/j.apcatb.2017.02.077

    Article  CAS  Google Scholar 

  3. Zhang, X.X., Zhang, W., Tian, D., et al., RSC. Adv., 2013, vol. 3, no. 21, pp. 7722–7725. https://doi.org/10.1039/C3RA21894E

    Article  CAS  Google Scholar 

  4. Wang, R., Wan, J.B., Li, Y.H., and Sun, H.W., Chem. Eng. Sci., 2015, vol. 137, pp. 59–68. https://doi.org/10.1016/j.ces.2015.05.052

    Article  CAS  Google Scholar 

  5. Kobayashi, M., Horiuchi, K., Yoshikawa, O., et al., Biosci. Biotechnol. Biochem., 2001, vol. 65, no. 1–3, pp. 298–304. https://doi.org/10.1271/bbb.65.298

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Y.F., Li, X.Y., Zhu, M.Y., Catal. Commun., 2016, vol. 85, pp. 5–8. https://doi.org/10.1016/j.catcom.2016.07.007

    Article  CAS  Google Scholar 

  7. Yang, G.X., Zhang, X.Y., Yang, H.L., et al., J. Colloid. Interf. Sci., 2018, vol. 532, pp. 92–102. https://doi.org/10.1016/j.jcis.2018.07.074

    Article  CAS  Google Scholar 

  8. Oyama, S.T., Zhao, H.Y., Freund, H.-J., et al., 2012б J. Catal., vol. 285, no. 1, pp. 1–5. https://doi.org/10.1016/j.jcat.2011.08.006

    Article  CAS  Google Scholar 

  9. Wu, L.Q., Miao, G., Dai, X., et al., Energ. Fuel., 2019, vol. 33, no. 8, pp. 7287–7296. https://doi.org/10.1021/acs.energyfuels.9b01896

    Article  CAS  Google Scholar 

  10. Wang, D.H., Liu, N., Zhang, J.Y., et al., J. Mol. Catal. A-Chem., 2014, vol. 393, pp. 47–55. https://doi.org/10.1016/j.molcata.2014.05.026

    Article  CAS  Google Scholar 

  11. Li, X.H., Yang, X.N., Zhou F, et al., J. Taiwan Ins. Chem. E., 2019, vol. 100, pp. 210–219 https://doi.org/10.1016/j.jtice.2019.04.024

    Article  CAS  Google Scholar 

  12. Julião, D., Gomes, A. C., Luís, C-S., et al., Catal. Commun., 2019, vol. 128, pp. 105704 https://doi.org/10.1016/j.catcom.2019.05.011

    Article  CAS  Google Scholar 

  13. Dehkordi, A.M., Kiaei, Z., and Sobati, M.A., Fuel. Process. Technol., 2009, vol. 90, no. 3, pp. 435–445. https://doi.org/10.1016/j.fuproc.2008.11.006

    Article  CAS  Google Scholar 

  14. Rezvani, M.A., Shojaie, A.F., and Loghmani, M.H., Catal. Commun., 2012, vol. 25, no. 0, pp. 36–40. https://doi.org/10.1016/j.catcom.2012.04.007

    Article  CAS  Google Scholar 

  15. Li, H.P., Zhu, W.S., Zhu, S.W., et al., Aiche. J., 2016, vol. 62, no. 6, pp. 2087−2100. https://doi.org/10.1002/aic.15161

    Article  CAS  Google Scholar 

  16. Xiong, J., Zhu, W.S., Li, H.M., et al., Aiche. J., 2013, vol. 59, no. 12, pp. 4696−4704. https://doi.org/10.1002/aic.14197

    Article  CAS  Google Scholar 

  17. Li, J.R., Yang. Z., Li, S.W., et al., J. Ind. Eng. Chem., 2019, vol. 82, pp. 1–16. https://doi.org/10.1016/j.jiec.2019.10.020

    Article  CAS  Google Scholar 

  18. Lorenzo, F.M. and Luis, C.C., Ind. Eng. Chem.Res., 2010, vol. 50, no. 5, pp. 2659–2664. https://doi.org/10.1021/ie100680p

    Article  CAS  Google Scholar 

  19. Wang, R., Zhang, G.F., and Zhao, H.X., Catal. Today, 2010, vol. 149, no. 1–2, pp. 117–121. https://doi.org/10.1016/j.cattod.2009.03.011

    Article  CAS  Google Scholar 

  20. Xiao, J., Wu, L.M., Wu, Y., et al., Appl. Energ., 2014, vol. 113, pp. 78–85. https://doi.org/10.1016/j.apenergy.2013.06.047

    Article  CAS  Google Scholar 

  21. Dehkordi, A.M., Kiaei, Z., and Sobati, M.A., Fuel. Process. Technol., 2009, vol. 90, no. 3, pp. 435–445. https://doi.org/10.1016/j.fuproc.2008.11.006

    Article  CAS  Google Scholar 

  22. Zhu, Y.F., Li, X.Y., and Zhu, M.Y., Catal. Commun., 2016, vol. 85, pp. 5–8. https://doi.org/10.1016/j.catcom.2016.07.007

    Article  CAS  Google Scholar 

  23. Ribeiro, S. O., Granadeiro, C. M., Almeida, P.L., et al., Catal. Today., 2018, vol. 333, pp. 226–236. https://doi.org/10.1016/j.cattod.2018.10.046

    Article  CAS  Google Scholar 

  24. Zhang, J., Wang, A.J., Wang, Y.J., et al., Chem. Eng. J., 2014, vol. 245, no. 245, pp. 65–70. https://doi.org/10.1016/j.cej.2014.01.103

    Article  CAS  Google Scholar 

  25. Abdalla, Z.E.A. and Li, B., Chem. Eng. J., 2012, vol. 200–202, pp. 113–121. https://doi.org/10.1016/j.cej.2012.06.004

    Article  CAS  Google Scholar 

  26. Raj, J.J., Wilfred, C.D., Shah, S.N., et al., J. Mol. Liq., 2017, vol. 225, pp. 281–289. https://doi.org/10.1016/j.molliq.2016.11.049

    Article  CAS  Google Scholar 

  27. Zhang, M., Zhu, W.S., Xun, S.H., et al., Chem. Eng. J., 2013, vol. 220, no. 6, pp. 328–336. https://doi.org/10.1016/j.cej.2012.11.138

    Article  CAS  Google Scholar 

  28. Wan, M.W. and Yen, T.F., Appl. Catal. A-Gen., 2007, vol. 319, no. 1, pp. 237–245. https://doi.org/10.1016/j.apcata.2006.12.008

    Article  CAS  Google Scholar 

  29. Tsigdinos, G., Topics. Curr. Chem., Berlin: Springer, 1978. https://doi.org/10.1007/BF00999626

    Book  Google Scholar 

  30. Li, X.H., He, P., Wang, T., et al., Chem. Sus. Chem, 2020, vol. 13, no. 10, pp. 2769–2778. https://doi.org/10.1002/cssc.202000328

    Article  CAS  Google Scholar 

  31. Ren, S.Y., Xie, Z. F., Cao, L. Q., et al., Catal. Commun., 2009, vol. 10, no. 5, pp. 464–467. https://doi.org/10.1016/j.catcom.2008.10.013

    Article  CAS  Google Scholar 

  32. Mirzaei, M., Eshtiagh-Hosseini, H., Nikpour, M., et al., Mendeleev. Commun., 2012, vol. 22, no. 3, pp. 141–142. https://doi.org/10.1016/j.mencom.2012.05.009

    Article  CAS  Google Scholar 

  33. Lu, Y., Sun, Z., Huo, M., RSC.Adv., 2013, vol. 5, no. 39, pp. 30869–30876. https://doi.org/10.1039/c4ra16952b

    Article  Google Scholar 

  34. Ma, J.J., Yang, M., Chen, Q., et. al., Appl. Clay. Sci., 2017, vol. 150, pp. 210–216. https://doi.org/10.1016/j.clay.2017.09.030

    Article  CAS  Google Scholar 

  35. Xie, D., He, Q.H., Su, Y.Y., et al., Chinese. J. Catal., 2015, vol. 36, no. 8, pp. 1205–1213. https://doi.org/10.1016/S1872-2067(15)60897-X

    Article  CAS  Google Scholar 

  36. Polikarpova, P., Akopyan, A., Shlenova, A., and Anisimov, A., Catal. Commun, 2020, vol. 146, pp. 106123. https://doi.org/10.1016/j.catcom.2020.106123

    Article  CAS  Google Scholar 

  37. Crucianelli, M., Bizzarri, B. M., and Saladino, R., Catal, 2019, vol. 9, no.12, p. 984. https://doi.org/10.3390/catal9120984

    Article  CAS  Google Scholar 

  38. Kulikov, L. K., Akopyan, A. V., Polikarpova, P.D., Ind. Eng. Chem. Res., 2019, vol. 58, no. 45, pp. 20562–20572. https://doi.org/10.1021/acs.iecr.9b04076

    Article  CAS  Google Scholar 

  39. Fraile, J. M., Gil, C., and Mayoral, J.A., et al., Appl. Catal. B-Environ., 2016, vol. 180, pp. 680–686. https://doi.org/10.1016/j.apcatb.2015.07.018

    Article  CAS  Google Scholar 

  40. Polikarpova, P., Akopyan, A., Shigapova, A., et al., Energ. Fuel., 2018, vol. 32, no. 10, pp. 10898–10903. https://doi.org/10.1021/acs.energyfuels.8b02583

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengfeng Xie.

Ethics declarations

The authors announced that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Xie, Z., Wang, X. et al. Study on Oxidative Desulfurization of Simulated Oil Catalyzed With Glycine Modified Phosphotungstic Acid. Russ J Appl Chem 93, 1899–1905 (2020). https://doi.org/10.1134/S1070427220120125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220120125

Keywords:

Navigation