Skip to main content
Log in

Making an Anode of a Hydrogen–Air Fuel Cell More Tolerant to CO: PtRuCo/C Catalyst and Synergistic Effect of PtRu/C and Oxygen Additives

  • Hydrogen Technologies
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Methods for making platinum-based catalytic systems (Pt/C, PtRu/С) in an anode for a low-temperature hydrogen–air fuel cell with a Nafion membrane more tolerant to CO were suggested and implemented. A PtRuCo/C trimetallic catalyst was synthesized, and the influence of the modification of the binary catalyst with cobalt on the current characteristics of the fuel cell was evaluated in a model of a hydrogen–air fuel cell. The fuel cell models had higher operation characteristics in oxidation of pure and technical-grade hydrogen, compared to those with the monoplatinum and binary catalysts. The influence of the air injection into hydrogen containing CO impurities was analyzed. The contribution of the air injection is manifested more strongly for the binary system than for the monoplatinum system. The trimetallic catalyst in combination with the air injection into hydrogen fuel can be used for optimizing the operation of the membrane–electrode unit of a fuel cell operating on technical-grade hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wang, G., Wang, H., Tang, Z., Li, W., and Bai, J., Appl. Catal. B, 2009, vol. 88, pp. 142–151. https://doi.org/10.1016/j.apcatb.2008.09.008

    Article  CAS  Google Scholar 

  2. Dimakis, N., Cowan, M., Hanson, G., and Smotkin, E.S., J. Phys. Chem. C, 2009, vol. 113, pp. 18730–18739. https://doi.org/10.1021/jp9036809

    Article  CAS  Google Scholar 

  3. Conway, B.E. and Tilak, B.V., Electrochim. Acta, 2002, vol. 47, pp. 3571–3594. https://doi.org/10.1016/S0013-4686(02)00329-8

    Article  CAS  Google Scholar 

  4. Couto, A., Rincon, A., Perez, M.C., and Gutierez, C., Electrochim. Acta, 2001, vol. 46, pp. 1285–1296. https://doi.org/10.1016/S0013-4686(00)00714-3

    Article  CAS  Google Scholar 

  5. Sharma, S., Groves, M.N., Fennell, J., Soin, N., Horswell, S.L., and Malardier-Jugroot, C., Chem. Mater., 2014, vol. 26, no. 21, pp. 6142–6151. https://doi.org/10.1021/cm502447s

    Article  CAS  Google Scholar 

  6. Tarasevich, M.R., Bogdanovskaya, V.A., Grafov, B.M., Zagudaeva, N.M., Rybalka, K.V., Kapustin, A.V., and Kolbanovskii, Yu.A., Russ. J. Electrochem., 2005, vol. 41, no. 7, pp. 746–757. https://doi.org/10.1007/s11175-005-0134-8

    Article  CAS  Google Scholar 

  7. Rybalka, K.V., Tarasevich, M.R., Grafov, B.M., Bogdanovskaya, V.A., Beketaeva, L.A., Loubnin, E.N., and Kolbanovskii, Yu.A., J. New Mater. Electrochem. Syst., 2007, vol. 10, no. 2, pp. 81–89. https://doi.org/10.14447/jnmes.v10i2

    Article  CAS  Google Scholar 

  8. Watanabe, M. and Motoo, S., J. Electroanal. Chem., 1975, vol. 60, pp. 275–283. https://doi.org/10.1016/S0022-0728(75)80262-2

    Article  CAS  Google Scholar 

  9. Pereira, L.G.S., Paganin, V.A., and Ticianelli, E.A., Electrochim. Acta, 2009, vol. 54, pp. 1992–1998. https://doi.org/10.1016/j.electacta.2008.07.003

    Article  CAS  Google Scholar 

  10. Garcia, A.C., Paganin, V.A., and Ticianelli, E.A., Electrochim. Acta, 2008, vol. 53, pp. 4309–4315. https://doi.org/10.1016/j.electacta.2008.01.006

    Article  CAS  Google Scholar 

  11. Arico, A.S., Modica, E., and Passalacqua, E., J. Appl. Electrochem., 1997, vol. 27, pp. 1275–1282. https://doi.org/10.1023/A:1018492122263

    Article  CAS  Google Scholar 

  12. Gottersfeld, S. and Pafford, J., J. Electrochem. Soc., 1988, vol. 135, pp. 2651–2652. https://doi.org/10.1149/1.2095401

    Article  Google Scholar 

  13. Sung, L.-Y., Hwang, B.-J., Hsueh, K.-L., and Tsau, F.-H., J. Power Sources, 2010, vol. 195, pp. 1630–1639. https://doi.org/10.1016/j.jpowsour.2009.09.062

    Article  CAS  Google Scholar 

  14. Korchagin, O.V., Zagudaeva, N.M., Radina, M.V., Bogdanovskaya, V.A., and Tarasevich, M.R., Russ. J. Electrochem., 2017, vol. 53, no. 6, pp. 615–621. https://doi.org/10.1134/S1023193517060118 

    Article  CAS  Google Scholar 

  15. Giddey, S., Ciacchi, F.T., and Badwal, S.P.S., Ionics, 2005, vol. 11, pp. 1–10. https://doi.org/10.1007/BF02430396

    Article  CAS  Google Scholar 

  16. Huang, T., Wang, X., Zhuang, J., Cai, W.-B., and Yu, A., Electrochem. Solid-State Lett., 2009, vol. 12, pp. B112–B115. https://doi.org/10.1149/1.3125286

    Article  CAS  Google Scholar 

  17. Cheng, Y., Shen, P.K., Saunders, M., and Jiang, S.P., Electrochim. Acta, 2015, vol. 177, pp. 217–226. https://doi.org/10.1016/j.electacta.2015.01.137

    Article  CAS  Google Scholar 

  18. Wakisaka, M., Mitsui, S., Hirose, Y., Kawashima, K., Uchida, H., and Watanabe, M., J. Phys. Chem. B, 2006, vol. 110, no. 46, pp. 23489–23496. https://doi.org/10.1021/jp0653510

    Article  CAS  PubMed  Google Scholar 

  19. Baschuk, J.J. and Li, X., Int. J. Glob. Energy Issues, 2003, vol. 20, no. 3, pp. 245–276. https://doi.org/10.1504/IJGEI.2003.003966

    Article  Google Scholar 

  20. Baschuk, J.J. and Li, X., Int. J. Energy Res., 2003, vol. 27, pp. 1095–1116. https://doi.org/10.1002/er.934

    Article  CAS  Google Scholar 

  21. Zamel, N. and Li, X., Int. J. Hydrogen Energy, 2008, vol. 33, pp. 1335–1344. https://doi.org/10.1016/j.ijhydene.2007.12.060

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Tripachev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripachev, O.V., Modestov, A.D., Korchagin, O.V. et al. Making an Anode of a Hydrogen–Air Fuel Cell More Tolerant to CO: PtRuCo/C Catalyst and Synergistic Effect of PtRu/C and Oxygen Additives. Russ J Appl Chem 93, 1743–1749 (2020). https://doi.org/10.1134/S1070427220110166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220110166

Keywords:

Navigation