Skip to main content
Log in

An Amidinato-Cerium Compound and Its Application as CVD Precursor for CeOx-Based Materials

  • Specific Technological Solutions
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A cerium compound with asymmetric amidinate ligands [Ce(iPrNC(Me)NtBu)3] has been reported and characterized in this paper. The compound showed good volatility and thermal stability, which were evaluated by TGA (thermogravimetric analysis). Corresponding results indicated the great potential of this compound for the chemical vapor deposition (CVD) process. Therefore, CeOx film and particle (loaded on TiO2) deposition were conducted by CVD using Ce(iPrNC(Me)NtBu)3 and O2 as precursors. Meanwhile, the photocatalytic activity of the CVD CeOx–TiO2 composite was evaluated by degrading methylene blue solution under the irradiation of ultraviolet light (365 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Younis, A., Chu, D., and Li, S., Funct. Nanomater., 2016, pp. 53–68. https://doi.org/10.5772/65937

  2. Wang, F., Wei, M., Evans, D.G., and Duan, X., J. Mater. Chem. A, 2016, vol. 4, no. 16, pp. 5773–5783. https://doi.org/10.1039/C5TA10737G

    Article  CAS  Google Scholar 

  3. Sayle, T.X.T., Cantoni, M., Bhatta, U.M., Parker, S.C., Hall, S.R., Möbus, G., Molinari, M., Reid, D., Seal, S., and Sayle, D.C., Chem. Mater., 2012, vol. 24, no. 10, pp. 1811–1821. https://doi.org/10.1021/cm3003436

    Article  CAS  Google Scholar 

  4. Montini, T., Melchionna, M., Monai, M., and Fornasiero, P., Chem. Rev., 2016, vol. 116, no. 10, pp. 5987–6041. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  PubMed  Google Scholar 

  5. Kim, W.H., Kim, M.K., Maeng, W.J., Gatineau, J., Pallem, V., Dussarrat, C., Noori, A., Thompson, D., Chu, S., and Kim, H.J., J. Electrochem. Soc., 2011, vol. 158, no. 8, pp. G169–G172. https://doi.org/10.1149/1.3594766

    Article  CAS  Google Scholar 

  6. Huang, X.B., Ni, C.S., Zhao, G.X., and Irvine, J.T.S., J. Mater. Chem. A, 2015, vol. 3, no. 24, pp. 12958–12964. https://doi.org/10.1039/C5TA01361E

    Article  CAS  Google Scholar 

  7. Younis, A., Chu, D., Mihail, I., and Li, S., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 19, pp. 9429–9434. https://doi.org/10.1021/am403243g

    Article  CAS  PubMed  Google Scholar 

  8. Majumder, D., and Roy, S., ACS Omega, 2018, vol. 3, no. 4, pp. 4433–4440. https://doi.org/10.1021/acsomega.8b00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duan, P.Q., Huang, T.T., Xiong, W., Shu, L., Yang, Y.L., Shao, C.Y., Xu, X.R., Ma, W.M., and Tang, R.K., Langmuir, 2017, vol. 33, no. 9, pp. 2454–2459. https://doi.org/10.1021/acs.langmuir.6b04421

    Article  CAS  PubMed  Google Scholar 

  10. Abdullah, H., Khan, M.R., Pudukudy, M., Yaakob, Z., and Ismail, N.A., J. Rare Earths, 2015, vol. 33, no. 11, pp. 1155–1161. https://doi.org/10.1016/S1002-0721(14)60540-8

    Article  CAS  Google Scholar 

  11. Gao, B., Zhai, W., Zhai, Q., and Zhang, M., Appl. Surf. Sci., 2019, vol. 484, pp. 534–541. https://doi.org/10.1016/j.apsusc.2019.04.037

    Article  CAS  Google Scholar 

  12. Malandrino, G., Angew. Chem., Int. Ed., 2009, vol. 48, no. 41, pp. 7478–7479. https://doi.org/10.1002/anie.200903570

    Article  CAS  Google Scholar 

  13. McElwee-White, L., Dalton Trans., 2006, no. 45, pp. 5327–5333. https://doi.org/10.1039/B611848H

    Article  Google Scholar 

  14. Pollard, K.D., Jenkins, H.A., and Puddephatt, R.J., Chem. Mater., 2000, vol. 12, no. 3, pp. 701–710. https://doi.org/10.1021/cm990455r

    Article  CAS  Google Scholar 

  15. Lo Nigro, R., Toro, R., Malandrino, G., and Fragala, I.L., Chem. Mater., 2003, vol. 15, no. 7, pp. 1434–1440. https://doi.org/10.1021/cm021348r

    Article  CAS  Google Scholar 

  16. Jiang, Y., and Bahlawane, N., J. Alloys Compd., 2009, vol. 485, nos. 1–2, pp. L52–L55. https://doi.org/10.1016/j.jallcom.2009.06.118

    Article  CAS  Google Scholar 

  17. Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Tondello, E., Ferroni, M., and Polizzi, S., Chem. Vap. Deposition, 2004, vol. 10, no. 5, pp. 257–264. https://doi.org/10.1002/cvde.200306296

    Article  CAS  Google Scholar 

  18. Lo Nigro, R., Toro, R.G., Malandrino, G., and Fragala, I.L., J. Mater. Chem., 2005, vol. 15, no. 23, pp. 2328–2337. https://doi.org/10.1039/B417292B

    Article  CAS  Google Scholar 

  19. Barreca, D., Comini, E., Gasparotto, A., Maccato, C., Maragno, C., Sberveglieri, G., and Tondello, E., J. Nanosci. Nanotechnol., 2008, vol. 8, no. 2, pp. 1012–1016. https://doi.org/10.1166/jnn.2008.080

    Article  CAS  PubMed  Google Scholar 

  20. Fiorenza, P., Greco, G., Fisichella, G., Roccaforte, F., Malandrino, G., and Lo Nigro, R., Appl. Phys. Lett., 2013, vol. 103, no. 11, pp. 112905/1–112905/5. https://doi.org/10.1063/1.4820795

    Article  CAS  Google Scholar 

  21. Oh, T.S., Boyd, D.A., Goodwin, D.G., and Haile, S.M., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 7, pp. 2466–2472. https://doi.org/10.1039/C2CP43036C

    Article  CAS  PubMed  Google Scholar 

  22. Saotome, R., Wakiya, N., Kiguchi, T., Cross, J.S., Sakurai, O., and Shinozaki, K., Key Eng. Mater., 2011, vol. 485, pp. 133–136. https://doi.org/10.4028/www.scientific.net/KEM.485.133

    Article  CAS  Google Scholar 

  23. Wrench, J.S., Black, K., Aspinall, H.C., Jones, A.C., Bacsa, J., Chalker, P.R., King, P.J., Werner, M., Davies, H.O., and Heys, P.N., Chem. Vap. Deposition, 2009, vol. 15, nos. 10–12, pp. 259–261. https://doi.org/10.1002/cvde.200904279

    Article  CAS  Google Scholar 

  24. Aspinall, H.C., Bacsa, J., Jones, A.C., Wrench, J.S., Black, K., Chalker, P.R., King, P.J., Marshall, P., Werner, M., Davies, H.O., and Odedra, R., Inorg. Chem., 2011, vol. 50, no. 22, pp. 11644–11652. https://doi.org/10.1021/ic201593s

    Article  CAS  PubMed  Google Scholar 

  25. Matsumura, T., Furuya, T., Sato, T., Okabe, Y., Suzuki, S., Ishibashi, K., and Yamamoto, Y., ECS Solid State Lett., 2015, vol. 4, no. 12, pp. N17–N19. https://doi.org/10.1149/2.0041512ssl

    Article  CAS  Google Scholar 

  26. Zanfoni, N., Avril, L., Imhoff, L., Domenichini, B., and Bourgeois, S., Thin Solid Films, 2015, vol. 589, pp. 246–251. https://doi.org/10.1016/j.tsf.2015.05.037

    Article  CAS  Google Scholar 

  27. Simon, P., Zanfoni, N., Avril, L., Li, Z., Potin, V., Domenichini, B., and Bourgeois, S., Adv. Mater. Interfaces, 2017, vol. 4, no. 4, pp. 1600821. https://doi.org/10.1002/admi.201600821

    Article  CAS  Google Scholar 

  28. Schlafer, J., Graf, D., Fornalczyk, G., Mettenborger, A., and Mathur, S., Inorg. Chem., 2016, vol. 55, no. 11, pp. 5422–5429. https://doi.org/10.1021/acs.inorgchem.6b00348

    Article  CAS  PubMed  Google Scholar 

  29. Mansoor, M.A., Mazhar, M., Ebadi, M., Ming, H.N., Mat Teridi, M.A., and Kong Mun, L., New J. Chem., 2016, vol. 40, no. 6, pp. 5177–5184. https://doi.org/10.1039/C5NJ03446A

    Article  CAS  Google Scholar 

  30. Ehsan, M.A., Naeem, R., Rehman, A., Hakeem, A.S., and Mazhar, M., J. Mater. Sci.: Mater. Electron., 2018, vol. 29, no. 15, pp. 13209–13219. https://doi.org/10.1007/s10854-018-9445-x

    Article  CAS  Google Scholar 

  31. Song, H., Xia, C., Meng, G., and Peng, D., Thin Solid Films, 2003, vol. 434, nos. 1–2, pp. 244–249. https://doi.org/10.1016/S0040-6090(03)00500-5

    Article  CAS  Google Scholar 

  32. Gebhard, M., Hellwig, M., Kroll, A., Rogalla, D., Winter, M., Mallick, B., Ludwig, A., Wiesing, M., Wieck, A.D., Grundmeier, G., and Devi, A., Dalton Trans., 2017, vol. 46, no. 31, pp. 10220–10231. https://doi.org/10.1039/C7DT01280B

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasan, N.B., Thiede, T.B., de los Arcos, T., Gwildies, V., Krasnopolski, M., Becker, H.W., Rogalla, D., Devi, A., and Fischer, R.A., Surf. Coat. Technol., 2013, vol. 230, pp. 130–136. https://doi.org/10.1016/j.surfcoat.2013.06.024

    Article  CAS  Google Scholar 

  34. Krisyuk, V., Gleizes, A.N., Aloui, L., Turgambaeva, A., Sarapata, B., Prud’Homme, N., Senocq, F., Samelor, D., Zielinska-Lipiec, A., de Caro, D., and Vahlas, C., J. Electrochem. Soc., 2010, vol. 157, no. 8, pp. D454–D461. https://doi.org/10.1149/1.3430105

    Article  CAS  Google Scholar 

  35. Dröse, P., Hrib, C.G., and Edelmann, F.T., J. Organomet. Chem., 2010, vol. 695, no. 17, pp. 1953–1956. https://doi.org/10.1016/j.jorganchem.2010.05.009

    Article  CAS  Google Scholar 

  36. Dröse, P., Hrib, C.G., Blaurock, S., and Edelmann, F.T., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 66, no. 11, pp. m1474. https://doi.org/10.1107/S1600536810042704

    Article  CAS  Google Scholar 

  37. Dröse, P., Blaurock, S., Hrib, C.G., and Edelmann, F.T., Z. Anorg. Allg. Chem., 2011, vol. 637, no. 2, pp. 186–189. https://doi.org/10.1002/zaac.201000337

    Article  CAS  Google Scholar 

  38. Päiväsaari, J., Dezelah, I.V.C.L., Back, D., El-Kaderi, H.M., Heeg, M.J., Putkonen, M., Niinistö, L., and Winter, C.H., J. Mater. Chem., 2005, vol. 15, no. 39, pp. 4224–4233. https://doi.org/10.1039/B507351K

    Article  Google Scholar 

  39. Park, K.H., and Marshall, W.J., J. Am. Chem. Soc., 2005, vol. 127, no. 26, pp. 9330–9331. https://doi.org/10.1021/ja051158s

    Article  CAS  PubMed  Google Scholar 

  40. Li, Z., Lee, D.K., Coulter, M., Rodriguez, L.N.J., and Gordon, R.G., Dalton Trans., 2008, no. 19, pp. 2592–2597. https://doi.org/10.1039/B800712H

    Article  Google Scholar 

  41. Wright, S.F., Dollimore, D., Dunn, J.G., and Alexander, K., Thermochim. Acta, 2004, vol. 421, nos. 1–2, pp. 25–30. https://doi.org/10.1016/j.tca.2004.02.021

    Article  CAS  Google Scholar 

  42. Du, L., Chu, W., Xu, C., Miao, H., and Ding, Y., RSC Adv., 2015, vol. 5, no. 74, pp. 59991–59996. https://doi.org/10.1039/C5RA07045G

    Article  CAS  Google Scholar 

  43. Edelmann, F.T., Chem. Soc. Rev., 2009, vol. 38, no. 8, pp. 2253–2268. https://doi.org/10.1039/B800100F

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, H., Li, M., Liu, J., Li, X., Tian, L., and Chen, P., Ceram. Int., 2018, vol. 44, no. 3, pp. 2709–2717. https://doi.org/10.1016/j.ceramint.2017.10.225

    Article  CAS  Google Scholar 

  45. Chen, F., Ho, P., Ran, R., Chen, W., Si, Z., Wu, X., Weng, D., Huang, Z., and Lee, C., J. Alloys Compd., 2017, vol. 714, pp. 560–566. https://doi.org/10.1016/j.jallcom.2017.04.138

    Article  CAS  Google Scholar 

  46. Golalikhani, M., James, T., Buskirk, P.V., Noh, W., Lee, J., Wang, Z., and Roeder, J.F., J. Vac. Sci. Technol. A, 2018, vol. 36, no. 5, pp. 051502/1–051502/7. https://doi.org/10.1116/1.5026405

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge financial support of this work from the Natural Science Foundation of Jiangsu Province (No. BK20190602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Ding.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Du, L., Liu, X. et al. An Amidinato-Cerium Compound and Its Application as CVD Precursor for CeOx-Based Materials. Russ J Appl Chem 93, 1553–1560 (2020). https://doi.org/10.1134/S1070427220100109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220100109

Keywords:

Navigation