Skip to main content
Log in

Kinetic Relationships of Liquid-Phase Oxidation of Styrene with Hydrogen Peroxide in the Presence of Polyoxotungstate Modified with Cerium Cations

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Liquid-phase oxidation of styrene with hydrogen peroxide in the presence of a catalytic system based on (NH4)10W12O41 + Ce(NO3)3 + H3PO4, supported on a microstructured carbon material and treated with an aqueous Н2О2 solution, was studied. The major reaction products are phenyloxirane and benzaldehyde, with phenylacetaldehyde, 1-phenylethane-1,2-diol, and benzoic acid also present. The kinetic relationships of the process were studied, and a kinetic model according to which phenyloxirane is the primary reaction product was suggested. Aldehydes are accumulated by parallel routes: oxidation of phenyloxirane and of its hydrolysis product, 1-phenylethane-1,2-diol. With an increase in the styrene: Н2О2 molar ratio, oxidation of 1-phenylethane-1,2-diol becomes the major pathway of the aldehyde formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme
Scheme
Fig. 6.
Scheme

Similar content being viewed by others

REFERENCES

  1. Pai, Z.P., Berdnikova, P.V., Tolstikov, A.G., Khlebnikova, T.B., and Selivanova, N.V., Catal. Ind., 2006, no. 5, pp. 105–109.

    Google Scholar 

  2. Sadigov, O.A., Alimardanov, H.M., Garibov, N.I., Babayev, N.R., and Almardanova, M.B., Processes Petrochem. Oil Refining, 2017, vol. 18, no. 2, pp. 89–143.

    CAS  Google Scholar 

  3. RF Patent 2328491, Publ. 2006.

  4. Kasyan, L.I., Russ. Chem. Rev., 1998, vol. 78, no. 3, pp. 211–231. https://doi.org/10.1070/RC1998v067n04ABEH000355

    Article  Google Scholar 

  5. Matienko, L.I., Mosolova, L.A., and Zaikov, G.E., Russ. Chem. Rev., 2009, vol. 67, no. 3, pp. 211–231. https://doi.org/10.1070/RC2009v078n03ABEH003919

    Article  CAS  Google Scholar 

  6. Hulea, V. and Dumitriu, E., Appl. Catal. A: General, 2004, vol. 277, nos. 1–2, pp. 99–106. https://doi.org/10.1016/j.apcata.2004.09.001

    Article  CAS  Google Scholar 

  7. Duarte, T.A.G., Estrada, A.C., Simões, M.M.Q., Santos, I.C.M.S., Cavaleiro, A.M.V., Neves, G.P.M.S., and Cavaleiro, J.A.S., Catal. Sci. Technol., 2015, vol. 5, pp. 351–363. https://doi.org/10.1039/C4CY00702F

    Article  CAS  Google Scholar 

  8. Wang, Y., Zhang, Q., Shishido, T., and Takehira, K., J. Catal., 2002, vol. 209, no. 1, p. 186. https://doi.org/10.1006/jcat.2002.3607

    Article  CAS  Google Scholar 

  9. Monti, D., Pastorini, A., Mancini, G., Borocci, S., and Tagliatesta, P., J. Mol. Catal. A: Chemical, 2002, vol. 179, nos. 1–2, p. 125. https://doi.org/10.1016/S1381-1169(01)00406-X

    Article  CAS  Google Scholar 

  10. Xinrong, L., Jinyu, X., Huizhang, L., Bin, Y., Songlin, J., and Gaoyang, X., J. Mol. Catal. A: Chemical, 2000, vol. 161, nos. 1–2, p. 163. https://doi.org/10.1016/S1381-1169(00)00331-9

    Article  Google Scholar 

  11. Benjamin, L.S. and Burgess, K.A., J. Am. Chem. Soc., 2001, vol. 123, no. 12, pp. 2933–2937. https://doi.org/10.1021/ja004000a

    Article  CAS  Google Scholar 

  12. Timofeeva, M.N., Pai, Z.P., Tolstikov, A.G., and Kustova, G.N., Russ. Chem. Bull., 2003, vol. 52, no. 2, pp. 480–486. https://doi.org/10.1023/A:1023495824378

    Article  CAS  Google Scholar 

  13. Zhang, X., Zeng, C., Zhang, L., and Xu, N., Kinet. Catal., 2009, vol. 50, pp. 199–205. https://doi.org/10.1134/S0023158409020098

    Article  CAS  Google Scholar 

  14. Garibov, N.I., Abdullaeva, M.Ya., Sadygov, O.A., and Alimardanov, Kh.M., in VI Mezhdunarodnyi simpozium. Sbornik nauchnykh statei “Fullereny i nanostruktury v kondensirovannykh sredakh” (VI Int. Symp. Coll. of Scientific Papers “Fullerenes and Nanostructures in Condenseed Media”), Minsk: Bel. Gos. Univ., 2011, pp. 248–256.

  15. Alimardanov, Kh.M., Alieva, A.A., Abasov, S.I., Abbasov, M.F., and Kuliev, A.D., Petrol. Chem., 2012, vol. 52, no. 2, pp. 97–104. https://doi.org/10.1134/S0965544112010021

    Article  CAS  Google Scholar 

  16. Liu, H., Bai, J., Wang, Sh., Li, Ch., Guo, L., Liang, H., Xu, T., Sun, W., and Li, H., Colloids Surf. A: Physicochem. Eng. Aspects, 2014, vol. 448, pp. 154–159. https://doi.org/10.1016/j.colsurfa.2014.02.024

    Article  CAS  Google Scholar 

  17. Long, Y., Zhao, Z., and Wu, L., Mol. Catal., 2017, vol. 433, pp. 291–300. https://doi.org/10.1016/j.mcat.2017.02.028

    Article  CAS  Google Scholar 

  18. Pawara, R.Y., Adhyapak, P.V., and Pardeshia, S.K., Appl. Catal. A: General, 2014, vol. 478, pp. 129–137. https://doi.org/10.1016/j.apcata.2014.03.040

    Article  CAS  Google Scholar 

  19. Sarbak, Z. and Lewandowski, M., Appl. Catal. A, 2001, vol. 208, nos. 1–2, p. 317. https://doi.org/10.1016/S0926-860X(00)00722-5

    Article  CAS  Google Scholar 

  20. Tang, Y. and Zhang, I., J. Serb. Chem. Soc., 2006, vol. 71, no. 2, p. 111. https://doi.org/10.2298/JSC0602111T

    Article  CAS  Google Scholar 

  21. Namiya, K., Memot, Y, Haseyama, T., and Matsuoka, S., J. Mol. Catal. A, 2000, vol. 152, nos. 1–2, pp. 55–68. https://doi.org/10.1016/S1381-1169(99)00283-6

    Article  Google Scholar 

  22. Woroblewska, A. and Mileher, E., Przem. Chem., 2008, vol. 81, no. 8, pp. 515–518.

    Google Scholar 

  23. Metelitsa, D.I., Russ. Chem. Rev., 1971, vol. 40, no. 7, pp. 563–580. https://doi.org/10.1070/RC1971v040n07ABEH001939

    Article  Google Scholar 

  24. Nagiev, T.M., Russ. Chem. Rev., 1985, vol. 54, no. 10, pp. 974–985. https://doi.org/10.1070/RC1985v054n10ABEH003152

    Article  Google Scholar 

  25. Snagovskii, Yu.S. and Ostrovskii, G.M., Modelirovanie kinetiki geterogennykh kataliticheskikh protsessov (Modeling of the Kinetics of Heterogeneous Catalytic Processes), Moscow: Khimiyia, 1976, pp. 152–173.

    Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Mammadaliyev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan.

The study was financially supported by the National Academy of Sciences of Azerbaijan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Alimardanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimardanov, H.M., Veliyeva, F.M., Garibov, N.I. et al. Kinetic Relationships of Liquid-Phase Oxidation of Styrene with Hydrogen Peroxide in the Presence of Polyoxotungstate Modified with Cerium Cations. Russ J Appl Chem 93, 729–740 (2020). https://doi.org/10.1134/S1070427220050146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220050146

Keywords:

Navigation