Skip to main content
Log in

Effect of the Isopropanol Impurity in the Feed on Catalytic Dehydration of Bioethanol to Ethylene

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Isopropanol is one of the main organic impurities present in bioethanol. Effect of the isopropanol impurity in the feed on catalytic dehydration of 92% ethanol to ethylene over an aluminum oxide catalyst was studied in a gradientless reactor under the conditions of kinetic control at 350–400°С. The maximum permissible concentration of isopropanol in ethanol was found to be 0.7 g L–1, which is equivalent to 0.05 mol % in the gaseous feed. Such isopropanol concentration in the feed does not decrease the catalyst activity and selectivity to ethylene but suppresses formation of acetaldehyde, hydrogen, and butylene, improving the quality of the ethylene product. A bioethanol sample with ~0.15 g L–1 isopropanol content, produced from miscanthus using nitric acid treatment of the biomass, was tested. The process characteristics and ethylene quality obtained by the bioethanol dehydration are slightly higher because of decreased formation of by-products, compared with the dehydration of commercially available pure ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Queiroz, A.U.B. and Collares-Queiroz, F.P., Polym. Rev., 2009, vol. 49, no. 2, pp. 65–78. https://doi.org/10.1080/15583720902834759

    Article  CAS  Google Scholar 

  2. Murzin, D.Y. and Simakova, I.L., Catal. Ind., 2011, vol. 3, no. 3, pp. 218–249. https://doi.org/10.1134/S207005041103007X

    Article  Google Scholar 

  3. Skiba, E.A., Baibakova, O.V., Budaeva, V.V., Pavlov, I.N., Vasilishin, M.S., Makarova, E.I., Sakovich, G.V., Ovchinnikova, E.V., Banzaraktsaeva, S.P., Vernikovskaya, N.V., and Chumachenko, V.A., Chem. Eng. J., 2017, vol. 391, pp. 178–186. https://doi.org/10.1016/j.cej.2017.05.182

    Article  CAS  Google Scholar 

  4. Baibakova, O.V., Skiba, E.A., Budaeva, V.V., Gismatulina, Yu.A., and Sakovich, G.V., Katal. Prom–sti., 2019, vol. 19, no. 6, pp. 474–481. https://doi.org/10.18412/1816-0387-2019-6-474-481

    Article  CAS  Google Scholar 

  5. Maity, S.K., Renew. Sustain. Energy Rev., 2015, vol. 43, pp. 1446–1466. https://doi.org/10.1016/j.rser.2014.08.075

    Article  CAS  Google Scholar 

  6. Haro, P., Ollero, P., and Trippe, F., Fuel Process. Technol., 2013, vol. 114, pp. 35–48. https://doi.org/10.1016/j.fuproc.2013.03.024

    Article  CAS  Google Scholar 

  7. Habe, H., Shinbo, T., Yamamoto, T., Sato, S., Shimada, H., and Sakaki, K., J. Jpn. Petrol. Inst., 2013, vol. 56, no. 6, pp. 414–422. https://doi.org/10.1627/jpi.56.414

    Article  CAS  Google Scholar 

  8. Pang, J., Zheng, M., Sun, R., Song, L., Wang, A., Wang, X., and Zhang, T., Bioresource Technol., 2015, vol. 175, pp. 424–429. https://doi.org/10.1016/j.biortech.2014.10.076

    Article  CAS  Google Scholar 

  9. Fahmi, R., Bridgwater, A.V., Donnison, I., Yates, N., and Jones, J.M., Fuel, 2008, vol. 87, no. 7, pp. 1230–1240. https://doi.org/10.1016/j.fuel.2007.07.026

    Article  CAS  Google Scholar 

  10. Fahmi, R., Bridgwater, A.V., Darvell, L.I., Jones, J.M., Yates, N., Thain, S., and Donnison, I.S., Fuel, 2007, vol. 86, nos. 10–11, pp. 1560–1569. https://doi.org/10.1016/j.fuel.2006.11.030

    Article  CAS  Google Scholar 

  11. Devianto, H., Han, J., Yoon, S.P., Nam, S.W., Lim, T.-H., Oh, I.-H., Hong, S.-A., and Lee, H.-I., Int. J. Hydrogen Energy, 2011, vol. 36, no. 16, pp. 10346–10354. https://doi.org/10.1016/j.ijhydene.2010.09.070

    Article  CAS  Google Scholar 

  12. Bilal, M. and Jackson, S.D., Appl. Catal. A, 2017, vol. 529, pp. 98–107. https://doi.org/10.1016/j.apcata.2016.10.020

    Article  CAS  Google Scholar 

  13. Mohsenzadeh, A., Zamani, A., and Taherzadeh, M.J., ChemBioEng Rev., 2017, vol. 4, no. 2, pp. 75–91. https://doi.org/10.1002/cben.201600025

    Article  CAS  Google Scholar 

  14. Ivanova, A.S., Kinet. Catal., 2012, vol. 53, no. 4, pp. 425–439. https://doi.org/10.1134/S0023158412040039

    Article  CAS  Google Scholar 

  15. Chumachenko, V.A. and Ovchinnikova, E.V., Catal. Ind., 2016, vol. 8, no. 2, pp. 134–138. https://doi.org/10.1134/S2070050416020045

    Article  Google Scholar 

  16. Ovchinnikova, E.V., Isupova, L.A., Danilova, I.G., Danilevich, V.V., and Chumachenko, V.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 683–689. https://doi.org/10.1134/S1070427216050013

    Article  CAS  Google Scholar 

  17. Skiba, E.A., Budaeva, V.V., Baibakova, O.V., Zolotukhin, V.N., and Sakovich, G.V., Biochem. Eng. J., 2017, vol. 126, pp. 118–125. https://doi.org/10.1016/j.bej.2016.09.003

    Article  CAS  Google Scholar 

  18. Gismatulina, Yu.A., Budaeva, V.V., Veprev, S.G., Sakovich, G.V., and Shumny, V.K., Russ. J. Genet. Appl. Res., 2015, vol. 5, no. 1, pp. 60–68. https://doi.org/10.1134/S2079059715010049

    Article  CAS  Google Scholar 

  19. Patent RU 2593724, Publ. 2016

  20. Baibakova, O.V., Skiba, E.A., Budaeva, V.V., and Sakovich, G.V., Catal. Ind., 2017, vol. 9, no. 3, pp. 257–263. https://doi.org/10.1134/S2070050417030023

    Article  Google Scholar 

  21. Banzaraktsaeva, S.P., Ovchinnikova, E.V., Danilova, I.G., Danilevich, V.V., and Chumachenko, V.A., Chem. Eng. J., 2019, vol. 374, pp. 605–618. https://doi.org/10.1016/j.cej.2019.05.149

    Article  CAS  Google Scholar 

  22. Patent RU 2609263, Publ. 2017.

  23. Banzaraktsaeva, S.P., Ovchinnikova, E.V., Isupova, L.A., and Chumachenko, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 169–178. https://doi.org/10.1134/S1070427217020021

    Article  CAS  Google Scholar 

  24. Kagyrmanova, A.P., Chumachenko, V.A., Korotkikh, V.N., Kashkin, V.N., and Noskov, A.S., Chem. Eng. J., 2011, vols. 176–177, pp. 188–194. https://doi.org/10.1016/j.cej.2011.06.049

    Article  CAS  Google Scholar 

  25. Lee, J., Szanyi, J., and Kwak, J.H., Mol. Catal., 2017, vol. 434, pp. 39–48. https://doi.org/10.1016/j.mcat.2016.12.013

    Article  CAS  Google Scholar 

  26. Lee, J., Jang, E.J., and Kwak, J.H., J. Catal., 2017, vol. 345, pp. 135–148. https://doi.org/10.1016/j.jcat.2016.11.025

    Article  CAS  Google Scholar 

  27. Christiansen, M.A., Mpourmpakis, G., and Vlachos, D.G., J. Catal., 2015, vol. 323, pp. 121–131. https://doi.org/10.1016/j.jcat.2014.12.024

    Article  CAS  Google Scholar 

  28. Kang, M. and Bhan, A., Catal. Sci. Technol., 2016, vol. 6, pp. 6667–6678. https://doi.org/10.1039/C6CY00990E

    Article  CAS  Google Scholar 

  29. Bilal, M. and Jackson, S.D., Catal. Sci. Technol., 2014, vol. 4, pp. 40–55. https://doi.org/10.1039/c4cy00560k

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Chem.) O.V. Baibakova, Cand. Sci. (Chem.) E.A. Skiba, and Cand. Sci. (Chem.) V.V. Budaeva (all Institute for Chemical and Energetic Technologies, Siberian Branch, Russian Academy of Sciences, Biisk, Altai krai, Russia) for providing pilot samples of bioethanol produced from miscanthus and to Cand. Sci. (Chem.) S.A. Prikhod’ko (Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia) for performing bioethanol rectification.

Funding

The study was performed within the framework of the government assignment for the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project АААА-А17-117041710076-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Ovchinnikova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banzaraktsaeva, S.P., Surmina, M.A., Chumachenko, V.A. et al. Effect of the Isopropanol Impurity in the Feed on Catalytic Dehydration of Bioethanol to Ethylene. Russ J Appl Chem 93, 721–728 (2020). https://doi.org/10.1134/S1070427220050134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220050134

Keywords:

Navigation