Skip to main content
Log in

Production and Research of Fullerene-Modified Chemical Adsorbent of Ammonia Based on Activated Carbon

  • Technologies for Production of Novel Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Activated carbons of grades AG-5, SKT-6A, and LiderKarbon-E, impregnated with copper sulfate with an additive content of 10–20 wt % and modified with fullerenes in the amount of 0.003–0.006 wt % were prepared and studied. The introduction of additives reduces the volume of micropores up to 36% with a slight decrease in the volume of mesopores. Modification of activated carbon by fullerenes increases its dynamic benzene capacity in humid environments by 28–36%, and the introduction of fullerenes into a chemical adsorbent based on activated carbon modified with copper sulfate increases its dynamic ammonia capacity by 45–51%, especially at high air humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Samonin, V.V., Novyi spravochnik khimika i tekhnologa. Syr’e i produkty promyshlennosti organicheskikh i neorganicheskikh veshchestv. Ch. I (New Reference Chemist and Technologist. Raw Materials and Products of the Industry of Organic and Inorganic Substances. Part 1), St Petersburg: NPO Professional, 2002.

    Google Scholar 

  2. Penkova, A.V., Acquah, S.F., Piotrovskiy, L.B., Markelov, D.A., and Semisalov, A.S., and Kroto, H.W., Russ. Chem. Rev., 2017, vol. 86, no. 6, pp. 530–566. https://doi.org/10.1070/RCR4712

    Article  CAS  Google Scholar 

  3. Kaputkina, L.M., Shchetinin, I.V., Yagodkin, Y.D., Savchenko, A.G., Gorshenkov, M.V., and Glebov, A.V, Inorg. Mater. Appl. Res., 2014, vol. 5, no. 4, pp. 334–339. https://doi.org/10.1134/S2075113314040261

    Article  Google Scholar 

  4. Potalitsin, M.G., Babenko, A.A., Alekhin, O.S., Alekseev, N.I., Arapov, O.V., Charykov, N.A., Nekrasov, K.V., Gerasimov, V.I., and Semenov, K.N., Russ. J. Appl. Chem., 2006, vol. 79, no. 2, pp. 306–309. https://doi.org/10.1134/S1070427206020273

    Article  CAS  Google Scholar 

  5. Sridhar, D., Balakrishnan, K., Gnanaprakasa, T.J., Raghavan, S., and Muralidharan, K., RSC Adv., 2015, vol. 5, no. 78, pp. 63834–63838. https://doi.org/10.1039/C5RA10903E

    Article  CAS  Google Scholar 

  6. Ettefaghi, E.O., Ahmadi, H., Rashidi, A., and Mohtasebi, S.S., Int. J. Precis. Eng. Manuf., 2013, vol. 14, no. 5, pp. 805–809. https://doi.org/10.1007/s12541-013-0105-z

    Article  Google Scholar 

  7. Fomkin, A.A., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 2, pp. 121–136. https://doi.org/10.1134/S2070205109020014

    Article  CAS  Google Scholar 

  8. Kiselev, V.M., Belousova, I.M., Belousov, V.P., and Sosnov, E.N., Gases Adsorption by Fullerenes and Polyhedral Multi-Wall Carbon Nanostructures, FL: Talyor & Francis Group, 2012. https://doi.org/10.1201/b13722-5

    Google Scholar 

  9. Melenevskaya, E.Yu., Mokeev, M.V., Nasonova, K.V., Gribanov, A.V., Podosenova, N.G., and Sharonova, L.V., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 10, pp. 1583–1587. https://doi.org/10.1134/S0036024412100172

    Article  CAS  Google Scholar 

  10. Alekseeva, O.V., Bagrovskaya, N.A., and Noskov, A.V., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 1, pp. 15–20. https://doi.org/10.1134/S2070205119010027

    Article  CAS  Google Scholar 

  11. Samonin, V.V., Podvyaznikov, M.L., Nikonova, V.Yu., Spiridonova, E.A., and Shevkina, A.Yu., Sorbiruyushchie materialy, izdeliya, ustroistva i protsessy upravlyaemoi adsorbtsii (Sorbent Materials, Products, Devices and Processes of Controlled Adsorption), St. Petersburg: Nauka, 2009.

    Google Scholar 

  12. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (The Basics of Adsorption Technology), Moscow: Khimiya, 1983.

    Google Scholar 

  13. Smirnov, A.D., Sorbtsionnaya ochistka vody (Sorption Water Treatment), Leningrad: Khimiya, 1982.

    Google Scholar 

  14. Yakimova, N.I., Mjakin, S.V., Vasiljeva, I.V., and Samonin, V.V., Activation of Adsorbents. Electron Beam Modification of Solids, New York: Nova Science Publishers, 2009.

    Google Scholar 

  15. Spiridonova, E.A., Khrylova, E.D., Samonin, V.V., Podvyaznikov, M.L., Yakovleva, A.V., and Kicha, M.A., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 2, pp. 335–340.

    Article  CAS  Google Scholar 

  16. Samonin, V., Podvyaznikov, M., Spiridonova, E., and Nikonova, V., Silicon Versus Carbon, Magarshak, Yu., Kozyrev, S., and Vaseashta, A.K., Eds., Springer, Dordrecht, 2009. https://doi.org/10.1007/978-90-481-2523-4_25

    Book  Google Scholar 

Download references

Funding

The results were obtained in the framework of the state assignment of the Ministry of Education and Science of Russia no. 10.7499.2017/8.9 for the implementation of government work in the field of scientific activity – initiative scientific projects “The scientific basis for the creation of hydrophobic microporous carbon adsorbents to increase the selectivity of adsorption of microimpurities of organic compounds from aqueous and humidified gas environments” (EGISU R&D no. AAAA-A17-117040510271-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Samonin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonova, E.A., Samonin, V.V., Podvyaznikov, M.L. et al. Production and Research of Fullerene-Modified Chemical Adsorbent of Ammonia Based on Activated Carbon. Russ J Appl Chem 93, 691–697 (2020). https://doi.org/10.1134/S1070427220050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220050092

Keywords:

Navigation