Skip to main content
Log in

Study of Properties of Film Materials Based on Cellulose and Polyurethane Rubbers for Drainage of Oils

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The use of both cellulose and polyurethane rubbers of the PU-8TB and PU-8A grades is discussed in the work to create film materials for draining oils. By the method of IR spectroscopy, the chemical interaction between the hydroxyl groups of cellulose and the carboxyl groups of polyurethane rubber is confirmed. Peculiarities of the thermal properties of the films are studied, which make it possible to speak of the repeated regeneration of materials from absorbed moisture without their destruction. The synthesized film materials have increased elasticity, hydrophilicity, and oleophobicity in comparison with the original cellulose film, which allows them to be used as sorbents and membranes in the field of oil and gas production. The research results showed that polyurethane rubbers PU-8TB and PU-8A, when combined with cellulose, act as functional additives in the manufacture of films capable of removing water from oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. US patent 9234413 B2 (publ. 2010). Water Injection Systems and Methods.

  2. Vajihi, F., Diaz, P., Sagbana, I., Zabini, H., Farhadi, A., and Sherhani, S., Effect of Low Salinity Water Injection on Capillary Pressure and Wettability in Carbonates, 2017. http://www.jgmaas.com/SCA/2017/SCA2017-051.pdf

  3. Farajzadeh, R., Zaal, C., van den Hoek, P., and Bruining, J., J. Cleaner Production, 2019, vol. 235, pp. 812–821. https://doi.org/10.1016/j.jclepro.2019.07.034

    Article  Google Scholar 

  4. Kadyrov, R.R., Nizaev, R.Kh., Yartiev, A.F., and Mukhametshin, V.V., Neft. Khoz-vo, 2017, no. 5, pp. 44–47. https://doi.org/10.24887/0028-2448-2017-5-44-47

    Article  CAS  Google Scholar 

  5. Annunciado, T.R., Sydenstricker, T., H.D., and Amico, S.C., Marine Pollution Bull, 2005, vol. 50, no. 11, pp. 1340–1346. https://doi.org/10.1016/j.marpolbul.2005.04.043

    Article  CAS  Google Scholar 

  6. Teas, C., Kalligeros, S., Zanikos, F., Stournas, S., and Lois, E., Investigation Desalination, 2001, vol. 140, no. 3, pp. 259–264. https://doi.org/10.1016/S0011-9164(01)00375-7

    Article  CAS  Google Scholar 

  7. Xu, Z., Zhao, Y., Wang, H., Wang, X., and Lin, T., Angew. Chem. Int. Ed., 2015, vol. 54, no. 15, pp. 4527–4530. https://doi.org/10.1002/anie.201411283

    Article  CAS  Google Scholar 

  8. Lin, X., Chen, Y., Liu, N., Cao, Y., Xu, L., Zhang, W., and Feng, L., Nanoscale, 2016, vol. 8, no. 16, pp. 8525–8529. https://doi.org/10.1039/C6NR01119E

    Article  CAS  PubMed  Google Scholar 

  9. Lee, C.H., Tiwari, B., Zhang, D., and Yap, Y.K., Environmental Sci.: Nano, 2017, vol. 4, no. 3, pp. 514–525. https://doi.org/10.1039/C6EN00505E

    Article  CAS  Google Scholar 

  10. Zhang, W., Liu, N., Cao, Y., Chen, Y., Xu, L., Lin, X., and Feng, L., Advanced Mater., 2015, vol. 27, no. 45, pp. 7349–7355. https://doi.org/10.1002/adma.201502695

    Article  CAS  Google Scholar 

  11. Torcello-Gómez, A. and Foster, T.J., Carbohydrate Polym., 2016, vol. 144, pp. 495–503. https://doi.org/10.1016/j.carbpol.2016.03.005

    Article  CAS  Google Scholar 

  12. Dai, L., Long, Z., Chen, J., An, X., Cheng, D., Khan, A., and Ni, Y., ACS Appl. Mater. & Interfaces, 2017, vol. 9, no. 6, pp. 5477–5485. https://doi.org/10.1021/acsami.6b14471

    Article  CAS  Google Scholar 

  13. Bryuzgin, E.V., Klimov, V.V., Repin, S.A., Navrotskiy, A.V., and Novakov, I.A., Appl. Surface Sci., 2017, vol. 419, pp. 454–459. https://doi.org/10.1016/j.apsusc.2017.04.222

    Article  CAS  Google Scholar 

  14. Yamashita, Y. and Sakamoto, K., Encyclopedia of Biocolloid and Biointerface Science 2V Set., 2016, New York: Wiley and Sons. https://doi.org/10.1021/acsami.6b14471

    Book  Google Scholar 

  15. Fernaondez-d’Arlas, B., Balko, J., Baumann, R.P., Poselt, E., Dabbous, R., Eling, B., Thurn-Albrecht Th., and Muller, A.J., Macromolecules, 2016, vol. 49, no. 20, pp. 7952–7964. https://doi.org/10.1021/acs.macromol.6b01527

    Article  CAS  Google Scholar 

  16. Zhang, Ch., Liu, R., Xiang, J., Kang, H., Liu, Zh., Huang, Y., J. Phys. Chem., 2014, vol. 118, pp. 9507–9514. https://doi.org/10.1021/jp506013c

    Article  CAS  Google Scholar 

  17. Baiburdov, T.A. and Shmakov, S.L., Izv. Saratov. Univ., Ser. Khimiya. Biologiya. Ekologiya, 2018, vol. 18, no. 1, pp. 41–44. https://doi.org/10.18500/1816-9775-2018-18-1-36-44

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation no. 19-73-10147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nevestenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevestenko, M.A., Bryuzgina, E.B., Tuzhikov, O.I. et al. Study of Properties of Film Materials Based on Cellulose and Polyurethane Rubbers for Drainage of Oils. Russ J Appl Chem 93, 564–571 (2020). https://doi.org/10.1134/S1070427220040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220040114

Keywords:

Navigation