Skip to main content
Log in

Relation of Structural and Chemical Parameters of Tar Hydroconversion Residue to Catalytic Properties of Nanosized Catalysts Based on Mo, Co, Ni, Al Compounds

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

At a pilot plant with a flow reactor, the hydroconversion of oil vacuum distillation residue (tar) was studied at a hydrogen pressure of 7 MPa, a temperature of 445°C, a feed space velocity of 2 h–1 in the presence of suspensions of nanosized particles of catalysts obtained in situ in the reaction zone from previously prepared in the feed of reverse emulsions of aqueous solutions of precursors: salts of molybdenum, nickel, cobalt, and aluminum. Based on the data of elemental analysis and 1H NMR spectra, the structural parameters of the hydrogenated feed vacuum distillation residues, are determined. The relationship between the structural and chemical parameters of the residues, conversion of raw materials, coke yield, and catalyst composition was established. Tar conversion and unsaturation of the vacuum residue, as structural parameter, increase in the series of Mo–Al, Ni, Mo–Co–Al, Mo, Mo–Co, Mo–Ni, Al catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kadiev, Kh.M., Khadzhiev, S.N., and Kadieva, M.Kh., Petrol. Chem., 2013, vol. 53, no. 5, pp. 298–308. https://doi.org/10.1134/S0965544113050034?.

    Article  CAS  Google Scholar 

  2. Khadzhiev, S.N., Kadiev, Kh.M., and Kadieva, M.Kh., Petrol. Chem., 2014, vol. 54, no. 5, pp. 323–346. https://doi.org/10.1134/S0965544114050065?.

    Article  CAS  Google Scholar 

  3. Bellussi, G., Rispoli, G., Landoni, A., Millini, R., Molinari, D., Montanari, E., Moscotti, D., and Pollesel, P., J. Catal. 2013, vol. 308, pp. 189–200. https://doi.org/10.1016/j.jcat.2013.07.002

    Article  CAS  Google Scholar 

  4. Bellussi, G., Rispoli, G., Molinari, D., Landoni, A., Pollesel, P., Panariti, N., Millini, R., and Montanari, E., Catal. Sci. & Technol., 2013, no. 3, pp. 176–182. https://doi.org/10.1039/c2cy20448g

    Article  CAS  Google Scholar 

  5. Khadzhiev, S.N., Kadiev, Kh.M., Yampolskaya, G.P., and Kadieva, M.Kh., Advances in Colloid and Interface Sci., 2013, vol. 197–198, pp. 132–145. https://doi.org/10.1016/j.cis.2013.05.003

    Article  CAS  Google Scholar 

  6. Gyul’maliev, A.M., Golovin, G.S., and Gladun, T.G., Teoreticheskie osnovy khimii uglya (Theoretical Fundamentals of Carbon Chemistry), Moscow: Izd-vo Moskov. Gos. Gorn. Univ., 2003.

    Google Scholar 

  7. Kadiev, Kh.M., Gyul’maliev, A.M., Khadzhiev, S.N., and Kadieva, M.Kh., Petrol. Chem., 2010, vol. 50, no. 6, pp. 468–471. https://doi.org/10.1134/S0965544110060101

    Article  Google Scholar 

  8. Yarkova, T.A. and Gyul’maliev, A.M., Solid Fuel Chem., no. 2, pp. 73–77. https://doi.org/10.3103/S036152191802012X

    Article  Google Scholar 

  9. Du, H., Li, M., Liu, D., Ren, Y., and Duan, Y., Appl. Petrochem. Res., 2015, vol. 5, pp. 89–98. https://doi.org/10.1007/s13203-014-0092-8

    Article  CAS  Google Scholar 

  10. Jeon, S.G., Na, J.-G., Ko, C.H., Yi, K.B., Rho, N.S., and Park, S.B., Energy & Fuels, 2011, vol. 25, pp. 4256–4260. https://doi.org/10.1021/ef200703t

    Article  CAS  Google Scholar 

  11. Del Bianco, A., Panariti, N., Di Carlo, S., Beltrame, P.L., and Carnitii, P., Energy & Fuels, 1994, vol. 8, no. 3, pp. 593–597. https://doi.org/10.1021/ef00045a013

    Article  CAS  Google Scholar 

  12. Panariti, N., Del Bianco, A., Del Piero, G., Marchionna, M., and Carniti, P., Appl. Catal. A: General, 2000, vol. 204, pp. 203–213. https://doi.org/10.1016/S0926-860X(00)00531-7

    Article  CAS  Google Scholar 

  13. Bano, S., Ahmad, S.W., Woo, S.I., and Saleem, F., Reaction Kinetics, Mechanisms and Catalysis, 2015, vol. 114, no. 2, pp. 473–487. https://doi.org/10.1007/s11144-014-0822-z

    Article  CAS  Google Scholar 

  14. Trejo, F., Rana, M.S., and Ancheyta, J., Catal. Today, 2008, vol. 130 (2–4), pp. 327–336. https://doi.org/10.1016/j.cattod.2007.10.105

    Article  CAS  Google Scholar 

  15. Ancheyta, J., Rana, M.S., and Furimsky, E., Catal. Today, 2005, vol. 109, pp. 3–15. https://doi.org/10.1016/j.cattod.2005.08.025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Batov.

Ethics declarations

FUNDING

This work was carried out as part of the state assignment of the Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zekel’, L.A., Magomadov, E.E., Gyul’maliev, A.M. et al. Relation of Structural and Chemical Parameters of Tar Hydroconversion Residue to Catalytic Properties of Nanosized Catalysts Based on Mo, Co, Ni, Al Compounds. Russ J Appl Chem 93, 449–455 (2020). https://doi.org/10.1134/S1070427220030179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220030179

Keywords:

Navigation