Skip to main content
Log in

Production of Biodiesel Fuel by Transesterification of Triglycerides in the Presence of Sodium Pyrophosphate

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The possibility of using anhydrous sodium pyrophosphate and its decahydrate in transesterification of triacyl glycerides (with sunflower and rapeseed oils as examples) with methanol to obtain biodiesel fuel was examined. As shown by gas-chromatographic analysis, at the vegetable oil to methanol ratio of 1: 12, temperature of 65°C, reaction time of 2 h, and catalyst concentration of no less than 6 wt %, the maximal yield of methyl esters of fatty acids (biodiesel) was 93 and 69% when using Na4P2O7 and Na4P2O7·10H2O, respectively. The catalytic effect of sodium pyrophosphate in the transesterification of triacyl glycerides was attributed to its methanolysis with the formation of sodium methylate. Water present in sodium pyrophosphate decahydrate causes hydrolysis of the formed sodium methylate; therefore, the yield of methyl esters of fatty acids is lower than with anhydrous pyrophosphate. Anhydrous sodium pyrophosphate can be used repeatedly no less than five times without significant decrease in the yield of methyl esters of fatty acids. Sodium pyrophosphate can be recommended for use in transesterification with other esters and alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra, V.K. and Goswami, R., Biofuels, 2018, vol. 9, no. 2, pp. 273–289. https://doi.org/10.1080/17597269.2017.1336350

    Article  CAS  Google Scholar 

  2. Kurzin, A.V., Evdokimov, A.N., Pavlova, O.S., and Antipina, V.B., Russ. J. Appl. Chem., 2007, vol. 80, no. 5, pp. 842–845. https://doi.org/10.1134/S1070427207050291

    Article  CAS  Google Scholar 

  3. Otera, J., Chem. Rev., 1993, vol. 93, no. 4, pp. 1449–1470. https://doi.org/10.1021/cr00020a004

    Article  CAS  Google Scholar 

  4. Bancquart, S., Vanhove, C., Pouilloux, Y., and Barrault, J., Appl. Catal. A: General, 2001, vol. 218, nos. 1–2, pp. 1–11. https://doi.org/10.1016/S0926-860X(01)00579-8

    Article  CAS  Google Scholar 

  5. Ramu, S., Lingaiah, N., Prabhavathi Devi, B.L.A., Prasad, R.B.N., Suryanarayana, I., and Sai Prasad, P.S., Appl. Catal. A: General, 2004, vol. 276, nos. 1–2, pp. 163–168. https://doi.org/10.1016/j.apcata.2004.08.002

    Article  CAS  Google Scholar 

  6. Suppes, G.J., Dasari, M.A., Doskocil, E.J., Mankidy, P.J., and Goff, M.J., Appl. Catal. A: General, 2004, vol. 257, no. 2, pp. 213–223. https://doi.org/10.1016/j.apcata.2003.07.010

    Article  CAS  Google Scholar 

  7. Liu, X., He, H., Wang, Y., Zhu, S., and Piao, X., Fuel, 2008, vol. 87, no. 2, pp. 216–221. https://doi.org/10.1016/j.fuel.2007.04.013

    Article  CAS  Google Scholar 

  8. Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S., and Lin, L., Clean Energy, 2019, vol. 3, no. 1, pp. 2–23. https://doi.org/10.1093/ce/zky020

    Article  Google Scholar 

  9. Bournay, L., Casanave, D., Delfort, B., Hillion, G., and Chodorge, J.A., Catal. Today, 2005, vol. 106, nos. 1–4, pp. 190–192. https://doi.org/10.1016/j.cattod.2005.07.181

    Article  CAS  Google Scholar 

  10. Ayodeji, A.A., Blessing, I.E., and Sunday, F.O., Data Brief, 2018, vol. 18, pp. 512–517. https://doi.org/10.1016/j.dib.2018.03.057

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chingakham, Ch., Tiwary, C., and Sajith, V., Catal. Lett., 2019, vol. 149, no. 4, pp. 1100–1110. https://doi.org/10.1007/s10562-019-02696-9

    Article  CAS  Google Scholar 

  12. Tan, Y.H., Abdullah, M.O., Kansedo, J., Mubarak, N.M., Chan, Y.S., and Nolasco-Hipolito, C., Renew. Energy, 2019, vol. 139, pp. 696–706. https://doi.org/10.1016/j.renene.2019.02.110

    Article  CAS  Google Scholar 

  13. Gollakota, A.R.K., Volli, V., and Shu, C.M., Sci. Total Environ., 2019, vol. 661, pp. 316–325. https://doi.org/10.1016/j.scitotenv.2019.01.165

    Article  CAS  PubMed  Google Scholar 

  14. Al-Muhtaseb, A.H., Jamil, F., Al-Haj, L., Myint, M.T.Z., Mahmoud, E., Ahmad, M.N.M., Hasan, A.O., and Rafiq, S., Biotechnol. Rep., 2018, vol. 20, e00284. https://doi.org/10.1016/j.btre.2018.e00284

    Article  Google Scholar 

  15. Dejean, A., Ouédraogo, I.W.K., Mouras, S., Valette, J., and Blin, J., Energy Sustain. Dev., 2017, vol. 40, pp. 103–111. https://doi.org/10.1016/j.esd.2017.07.006

    Article  Google Scholar 

  16. Behnia, M.S., Emerson, D.W., Steinberg, S.M., Alwis, R.M., Dueñas, J.A., and Serafino, J.O., J. Chem. Educ., 2011, vol. 88, no. 9, pp. 1290–1292. https://doi.org/10.1021/ed100460m

    Article  CAS  Google Scholar 

  17. Malins, K., Fuel Process. Technol., 2018, vol. 179, pp. 302–312. https://doi.org/10.1016/j.fuproc.2018.07.017

    Article  CAS  Google Scholar 

  18. Pukale, D.D., Maddikeri, G.L., Gogate, P.R., Pandit, A.B., and Pratap, A.P., Ultrason. Sonochem., 2015, vol. 22, pp. 278–286. https://doi.org/10.1016/j.ultsonch.2014.05.020

    Article  CAS  PubMed  Google Scholar 

  19. Guan, G., Kusakabe, K., and Yamasaki, S., Fuel Process. Technol., 2009, vol. 90, pp. 520–524. https://doi.org/10.1016/j.fuproc.2009.01.008

    Article  CAS  Google Scholar 

  20. Thinnakorn, K. and Tscheikuna, J., Appl. Catal. A: General, 2014, vol. 476, pp. 26–33. https://doi.org/10.1016/j.apcata.2014.02.016

    Article  CAS  Google Scholar 

  21. Choedkiatsakul, I., Ngaosuwan, K., and Assabumrungrat, S., Fuel Process. Technol., 2013, vol. 111, pp. 22–28. https://doi.org/10.1016/j.fuproc.2013.01.015

    Article  CAS  Google Scholar 

  22. Yin, J.Z., Ma, Z., Shang, Z.Y., Hu, D.P., and Xiu, Z.L., Fuel, 2012, vol. 93, pp. 284–287. https://doi.org/10.1016/j.fuel.2011.11.056

    Article  CAS  Google Scholar 

  23. De Filippis, P., Borgianni, C., and Paolucci, M., Energy Fuels, 2005, vol. 19, no. 6, pp. 2225–2228. https://doi.org/10.1021/ef0500686

    Article  CAS  Google Scholar 

  24. Jiang, S.T., Zhang, F.J., and Pan, L.J., Braz. J. Chem. Eng., 2010, vol. 27, no. 1, pp. 137–144. https://doi.org/10.1590/S0104-66322010000100012

    Article  CAS  Google Scholar 

  25. Satyanarayana Murthy, Y.V.V., Resapu, R.R., Satyanarayana, M.R.S., and Jogi, R., Int. J. Chem. React. Eng., 2015, vol. 13, no. 3, pp. 395–406. https://doi.org/10.1515/ijcre-2015-0004

    Article  Google Scholar 

  26. Jogi, R., Satyanarayana Murthy, Y.V.V., Satyanarayana, M.R.S., Nagarjuna Rao, T., and Javed, S., Energy Sources, A, 2016, vol. 38, no. 17, pp. 2610–2616. https://doi.org/10.1080/15567036.2015.1093044

    Article  CAS  Google Scholar 

  27. Arzamendi, G., Arguiñarena, E., Campo, I., Zabala, S., and Gandía, L.M., Catal. Today, 2008, vol. 133–135, pp. 305–313. https://doi.org/10.1016/j.cattod.2007.11.029

    Article  CAS  Google Scholar 

  28. Viola, E., Blasi, A., Valerio, V., Guidi, I., Zimbardi, F., Braccio, G., and Giordano, G., Catal. Today, 2012, vol. 179, no. 1, pp. 185–190. https://doi.org/10.1016/j.cattod.2011.08.050

    Article  CAS  Google Scholar 

  29. Abrouki, Y., Anouzla, A., Loukili, H., Saida, K., Bennazha, J., Loukili, A., Rayadh, A., Sebti, S., and Zahouily, M., Am. J. Biol. Chem. Pharm. Sci., 2013, vol. 1, no. 5, pp. 16–21.

    Google Scholar 

  30. Kurzin, A.V., Evdokimov, A.N., Golikova, V.S., and Fedorov, V.A., Russ. J. Appl. Chem., 2012, vol. 85, no. 5, pp. 841–842. https://doi.org/10.1134/S1070427212050278

    Article  CAS  Google Scholar 

  31. Patent US 2278550, Publ. 1942.

  32. Evdokimov, A.N., Kurzin, A.V., Sivakov, A.A., and Golikova, V.S., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2018, vol. 61, no. 12, pp. 14–23. https://doi.org/10.6060/ivkkt.20186112.5735

    Article  CAS  Google Scholar 

  33. Platonov, A.Y., Kurzin, A.V., and Evdokimov, A.N., J. Solution Chem., 2010, vol. 39, no. 3, pp. 335–342. https://doi.org/10.1007/s10953-010-9505-1

    Article  CAS  Google Scholar 

  34. Turova, N.Ya., Turevskaya, E.P., Kessler, V.G., and Yanovskaya, M.I., The Chemistry of Metal Alkoxides, New York: Kluwer, 2002, pp. 16–21. https://doi.org/10.1007/b113856

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kurzin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 10, pp. 1283–1290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurzin, A.V., Evdokimov, A.N. Production of Biodiesel Fuel by Transesterification of Triglycerides in the Presence of Sodium Pyrophosphate. Russ J Appl Chem 92, 1377–1382 (2019). https://doi.org/10.1134/S1070427219100070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219100070

Keywords

Navigation