Skip to main content
Log in

Waste Animal Bone as a Novel Layered Heterogeneous Catalyst for the Transesterification of Biodiesel

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel layered heterogeneous catalyst of hydroxyapatite and phases of calcium phosphate was prepared by two step process from waste animal bone for the synthesis of biodiesel. In the two step method, calcination of the animal bone is followed by hydrothermal reaction, to obtain a heterogeneous catalyst with layered structure. The heterogeneous catalysts were characterized by dynamic light scattering, X-ray diffraction, thermogravimetric analysis, fourier transmission infrared spectra, scanning electron microscopy, atomic force microscopy and Brunauer-Emmer-Teller to understand the behaviour of the materials. The increase in the surface area of the catalyst synthesized by hydrothermal reaction is mainly due to the formation of the layered structure of the material. Biodiesel was prepared by the transesterification of honge oil and methanol, using the heterogeneous catalyst synthesized from raw dried animal bones, by calcination and hydrothermal reaction and yield was compared.The yield obtained for the calcined and hydrothermally treated samples were found to be 88% and 96% respectively. Higher yield was observed for catalyst synthesised by hydrothermal method as compared to that synthesized by calcination which is mainly due to enhanced surface area of the catalyst prepared through two step process. The performance of the catalyst was evaluated by comparing the biodiesel yield obtained. Gas Chromatography-Mass Spectroscopy (GC-MS) was also done for the analysis of biodiesel. The layered heterogeneous catalyst synthesized by hydrothermal reaction of animal bones with better surface area, is an efficient catalyst for the transesterification of biodiesel, with better yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sahani S, Banerjee S, Sharma YC (2018) J Taiwan Inst Chem Eng 86:42–56

    Article  CAS  Google Scholar 

  2. Chouhan APS, Sarma AK (2011) Renew Sustain Energy Rev 15:4378–4399

    Article  CAS  Google Scholar 

  3. Qi DH, Lee CF (2014) J Taiwan Inst Chem Eng 45:504–507

    Article  CAS  Google Scholar 

  4. Savaliya ML, Bhakhar MS, Dholakiya BZ (2016) Catal Lett 146:2313–2323

    Article  CAS  Google Scholar 

  5. Atadashi IM, Aroua MK, Aziz AA (2011) Renew Energy 36:437–443

    Article  CAS  Google Scholar 

  6. Wang C, Chen W, Wang W, Wu Y, Chi R, Tang Z (2011) Energy Convers Manag 52:1454–1458

    Article  CAS  Google Scholar 

  7. Hosseini SH, Taghizadeh-Alisaraei A, Ghobadian B, Abbaszadeh-Mayvan A (2017))Energy 124:543–552

    CAS  Google Scholar 

  8. Hu S, Guan Y, Wang Y, Han H (2011) Appl Energy 88:2685–2690

    Article  CAS  Google Scholar 

  9. Sharma YC, Singh B, Korstad J (2011) Fuel 90:1309–1324

    Article  CAS  Google Scholar 

  10. Nguyen HC, Liang SH, Li SY, Su CH, Chien CC, Chen YJ (2018) J Taiwan Inst Chem Eng 85:165–169

    Article  CAS  Google Scholar 

  11. Marinković DM, Stanković MV, Veličković AV, Avramović JM, Miladinović MR, Stamenković OO, Veljković VB, Jovanović DM (2016) Renew Sustain Energy Rev 56:1387–1408

    Article  Google Scholar 

  12. Yin X, Duan X, You Q, Dai C, Tan Z, Zhu X (2016) Energy Convers Manag 112:199–207

    Article  CAS  Google Scholar 

  13. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887–7916

    Article  CAS  Google Scholar 

  14. Chakraborty R, Mukhopadhyay P, Kumar B (2016) Energy Convers Manag 2016;126:32–41

    Article  CAS  Google Scholar 

  15. Lee AF, Wilson K (2015) Catal Today 242:3–18

    Article  CAS  Google Scholar 

  16. Piccirillo C, Silva MF, Pullar RC, Braga Da Cruz I, Jorge R, Pintado MME (2013) Mater Sci Engg C 33:103–110

    Article  CAS  Google Scholar 

  17. Singh V, Hameed BH, Chandra Y (2016) Energy Convers Manag 122:52–62

    Article  CAS  Google Scholar 

  18. Nisar J, Razaq R, Farooq M, Iqbal M, Khan RA, Sayed M (2017) Renew Energy 101:111–119

    Article  CAS  Google Scholar 

  19. Takeuchi A, Tsuge T, Kikuchi M (2016) Ceram Int 42:15376–15382

    Article  CAS  Google Scholar 

  20. Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Energy Environ Sci 4:793–804

    Article  CAS  Google Scholar 

  21. Lohri CR, Camenzind EJ, Zurbrügg C (2014) Waste Manag 34:542–552

    Article  Google Scholar 

  22. Corro G, Sánchez N, Pal U, Bañuelos F (2016) Waste Manag 47:105–113

    Article  CAS  Google Scholar 

  23. Wei Z, Xu C, Li B (2009) Bioresour Technol 100:2883–2885

    Article  CAS  Google Scholar 

  24. Granqvist CG, Buhrman R (1976) J Catal 42:477–479

    Article  CAS  Google Scholar 

  25. Decher G, Lvov Y, Schmitt J (1994) Thin Solid Films 244:772–777

    Article  CAS  Google Scholar 

  26. Borges ME, Díaz L (2012) Renew Sustain Energy Rev 16:2839–2849

    Article  CAS  Google Scholar 

  27. Kouzu M, Hidaka JS (2012) Fuel 93:1–12

    Article  CAS  Google Scholar 

  28. Figueiredo M, Fernando A, Martins G, Freitas J, Judas F, Figueiredo H (2010) Ceram Int 36:2383–2393

    Article  CAS  Google Scholar 

  29. Obadiah A, Swaroopa GA, Kumar SV, Jeganathan KR, Ramasubbu A (2012) Bioresour Technol 116:512–516

    Article  CAS  Google Scholar 

  30. Farooq M, Ramli A (2015) Renew Energy 76:362–368

    Article  CAS  Google Scholar 

  31. Liu H, Chen J, Chen L, Xu Y, Guo X, Fang D (2016) ACS Sustain Chem Engg 4:3140–3150

    Article  CAS  Google Scholar 

  32. Chen GY, Shan R, Yan BB, Shi JF, Li SY, Liu CY (2016) Fuel Process Technol 143:110–117

    Article  CAS  Google Scholar 

  33. Vardon DR, Moser BR, Zheng W, Witkin K, Evangelista RL, Strathmann TJ (2013) ACS Sustain Chem Engg 1:1286–1294

    Article  CAS  Google Scholar 

  34. Ngamcharussrivichai C, Nunthasanti P, Tanachai S, Bunyakiat K (2010) Fuel Process Technol 91:1409–1415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sajith.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chingakham, C., Tiwary, C. & Sajith, V. Waste Animal Bone as a Novel Layered Heterogeneous Catalyst for the Transesterification of Biodiesel. Catal Lett 149, 1100–1110 (2019). https://doi.org/10.1007/s10562-019-02696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02696-9

Keywords

Navigation