Skip to main content
Log in

Specific Features of Dissolution of Metallic Rhodium in Acid Oxidative Media under Hydrothermal Conditions

  • Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Dissolution of metallic rhodium in solutions of hydrochloric acid was studied under hydrothermal autoclave conditions. The influence exerted by various factors on the depth of rhodium(0) transfer to solution was examined. It was found that the quantitative dissolution of rhodium(0) is reached in a mixture of hydrochloric and hydrobromic acids in the presence of manganese dioxide at 20°C in autoclaves. The results obtained can be used both for an analytical determination of rhodium and for processing of rhodium-containing raw materials and synthesis of complex rhodium compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgson, A.P.J., Jarvis, K.E., Grimes, R.W., and Marsden, O.J., J. Radioanal. Nucl. Chem., 2016, vol. 307, no. 3, pp. 2181–2186. https://doi.org/10.1007/s10967-015-4381-1

    Article  CAS  Google Scholar 

  2. Park, J.C., Bull. Korean Chem. Soc., 2008, vol. 29, no. 9, pp. 1787–1789. https://doi.org/10.5012/bkcs.2008.29.9.1787

    Article  CAS  Google Scholar 

  3. Saguru, C., Ndlovu, S., and Moropeng, D., Hydrometallurgy, 2018, vol. 182, pp. 44–56. DOI: https://doi.org/10.1016/j.hydromet.2018.10.012

    Article  CAS  Google Scholar 

  4. Upadhyay, A., Lee, J.-C., Kim, E., Kim, M.S., Kim, B.S., and Kumar, V., J. Chem. Technol. Biotechnol., 2013, vol. 88, pp. 1991–1999. https://doi.org/10.1002/jctb.4057

    CAS  Google Scholar 

  5. Voinov, V.N., Konik, K.P., Kuzas, E.A., and Lobko, S.V., Tsvet. Met., 2016, no. 9, pp. 57–62. https://doi.org/10.17580/tsm.2016.09.08

  6. Lobko, S.V., Kuzas, E.A., Naboichenko, S.S., and Voinov, V.N., Tsvet. Met., 2017, no. 3, pp. 45–49. https://doi.org/10.17580/tsm.2017.03.07

  7. Harjanto, S., Cao, Y., Shibayama, A., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., and Fujita, T., Mater. Trans., 2006, vol. 47, no. 1, pp. 129–135. https://doi.org/10.2320/matertrans.47.129

    Article  CAS  Google Scholar 

  8. Borisov, R.V., Belousov, O.V., Dorokhova, L.I., and Zhizhaev, A.M., Zh. Sib. Fed. Univ., Khim., 2017, vol. 10, no. 3, pp. 325–332. https://doi.org/10.17516/1998-2836-0029

    Article  Google Scholar 

  9. Jha, M.K., Lee, J.C., Kim, M.S., Jeong, J., Kim, B.S., and Kumar, V., Hydrometallurgy, 2013, vol. 133, pp. 23–32. https://doi.org/10.1016/j.hydromet.2012.11.012

    Article  CAS  Google Scholar 

  10. Belousov, O.V., Belousova, N.V., Ryumin, A.I., and Borisov, R.V., Russ. J. Appl. Chem., 2015, vol. 88, no. 6, pp. 1078–1081. 10.1134S1070427215060300.

    Article  CAS  Google Scholar 

  11. Mahmoud, M.H.H., J. Miner. Met. Mater. Soc., 2003, vol. 55, no. 4, pp. 37–40. https://doi.org/10.1007/s11837-003-0086-y

    Article  CAS  Google Scholar 

  12. Belousov, O.V., Dorokhova, L.I., Chmyshkova, T.I., and Zhizhaev, A.M., Tsvet. Met., 2005, no. 3, pp. 13–15.

  13. Belyaev, V.N., Vladimirskaya, I.N., Kolonina, L.N., Kovalev, G.G., Kuznetsov, L.B., and Shiryaeva, O.A., Zh. Anal. Khim., 1985, vol. 40, no. 1, pp. 135–140.

    CAS  Google Scholar 

  14. Gil’bert, E.N., Shabanova, L.N., Kovalenko, N.L., Bukhbinder, G.N., Soldatenko, G.G., and Kabaeva, V.A., Zh. Anal. Khim., 1991, vol. 46, no. 7, pp. 1391–1402.

    Google Scholar 

  15. Borisov, R.V., Belousov, O.V., and Irtyugo, L.A., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 10, pp. 1732–1738. https://doi.org/10.1134/S0036024414100069.

    Article  CAS  Google Scholar 

  16. Pesic, B. and Sergent, R.H., Metall. Mater. Trans. B, 1993, vol. 24, no. 3, pp. 419–431. https://doi.org/10.1007/BF02666424

    Article  Google Scholar 

  17. Lee, J. and Ilyas, S., Gold Metallurgy and the Environment, Boca Raton: CRC Press, 2018, Ch. 6, p. 147. https://doi.org/10.1201/9781315150475

    Google Scholar 

Download references

Acknowledgments

The study was carried out in part on the equipment of Krasnoyarsk regional collective use center at Federal Research Center, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences.

The authors are grateful to A.M. Zhizhaev, Cand. Sci. (Engineering), head of the laboratory of X-ray and spectral methods of analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Borisov.

Additional information

Conflict of Interest

The authors state that they have no confl ict of interest to be disclosed in the present communication.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 8, pp. 1010–1014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousova, N.V., Belousov, O.V., Borisov, R.V. et al. Specific Features of Dissolution of Metallic Rhodium in Acid Oxidative Media under Hydrothermal Conditions. Russ J Appl Chem 92, 1102–1106 (2019). https://doi.org/10.1134/S107042721908007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721908007X

Keywords

Navigation