Skip to main content
Log in

Laboratory Reactor for Visual Examination of Formation/Decomposition of Gas Hydrates in Water-Oil Systems

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Design of an installation for studying the formation and decomposition of gas hydrates in water-oil systems via visual examination and video recording under magnifications of up to 50 and some results obtained by using this installation are reported. Information is presented about the growth rates of hydrate films at water-oil interfaces, specific morphological features of hydrate crystals formed in the process and agglomerates of these, and changes in the hydrate formations in the course of time. This method is direct and the most informative way to examine processes occurring in systems of this kind. The results obtained can be used to control the hydrate formation in bores of oil-producing wells and infield pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Istomin, V.A. and Kvon, V.G., Preduprezhdenie i likvidatsiya gazovykh gidratov v sistemakh dobychi gaza (Prevention and Elimination of Gas Hydrates in Systems for Gas Extraction), Moscow: Inf.-Reklamn. Tsentr Gazprom, 2004.

    Google Scholar 

  2. Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., and Li, X.S., Appl. Energ., 2016, vol. 162, pp. 1633–1652.

    Article  Google Scholar 

  3. Sloan, E.D., Hydrate Engineering, Henry L. Doherty series, vol. 21, Ben Bloys, J., Ed.,. Texas, Richardson, 2000.

  4. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, Boca Rator: CRC Press, 2008, 3rd ed.

    Google Scholar 

  5. Aman, Z.M. and Koh, C.A., Chem. Soc. Rev., 2016, vol. 45,no. 6, pp. 1678–1690.

    Article  CAS  PubMed  Google Scholar 

  6. Sum, A.K., Koh, C.A., and Sloan, E.D., Energy Fuels, 2012, vol. 26, pp. 4046–4052.

    Article  CAS  Google Scholar 

  7. Sum, A.K., Koh, C.A., and Sloan, E.D., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 7457–7465.

    Article  CAS  Google Scholar 

  8. Zerpa, L.E., Salager, J.-L., Koh, C.A., Sloan, E.D., and Sum, A.K., Ind. Eng. Chem. Res., 2011, vol. 50, pp. 188–197.

    Article  CAS  Google Scholar 

  9. Parent, J.S. and Bishnoi, P.R., Chem. Eng. Commun., 1996, vol. 144,no. 1, pp. 51–64.

    Article  CAS  Google Scholar 

  10. Subramanian, S. and Sloan, E.D. Jr., Fluid Phase Equilib., 1999, vol. 158, pp. 813–820.

    Article  Google Scholar 

  11. Hashimoto, S., Sugahara, T., Moritoki, M., Sato, H., and Ohgaki, K., Chem. Eng. Sci., 2008, vol. 63,no. 4, pp. 1092–1097.

    Article  CAS  Google Scholar 

  12. Sugahara, T., Murayama, S., Hashimoto, S., and Ohgaki, K., Fluid Phase Equilib., 2005, vol. 233, pp. 190–193.

    Article  CAS  Google Scholar 

  13. Nakano, S., Moritoki, M., and Ohgaki, K., J. Chem. Eng. Data, 1999, vol. 44,no. 2, pp. 254–257.

    Article  CAS  Google Scholar 

  14. Smelik, E.A. and King, H.E., Am. Mineral., 1997, vol. 82,nos. 1–2, pp. 88–98.

    Article  CAS  Google Scholar 

  15. Stern, L.A., Hogenboom, D.L., Durham, W.B., Kirby, S.H., and Chou, I.-M., J. Phys. Chem. B, 1998, vol. 102,no. 15, pp. 2627–2632.

    Article  CAS  Google Scholar 

  16. Chou, I.-M., Pasteris, J.D., and J.C., Geochim. Cosmochim. Acta, 1990, vol. 43,no. 3, pp. 535–543.

    Article  Google Scholar 

  17. Ohmura, R., Kashiwazaki, S., and Mori, Y.H., J. Cryst. Growth, 2000, vol. 218,nos. 2–4, pp. 372–380.

    Article  CAS  Google Scholar 

  18. Makogon, Yu.F. and Holsti, J.S., Ross. Khim. Zh., 2003, vol. 47,no. 3, pp. 43–48.

    Google Scholar 

  19. Ota, M., Morohashi, K., Abe, Y., Watanabe, M., and Inomata, H., Energy Convers. Manage., 2005, vol. 46,nos. 11–12, pp. 1680–1691.

    Article  CAS  Google Scholar 

  20. Saito, K., Kishimoto, M., Tanaka, R., and Ohmura, R., Cryst. Growth Des., 2010, vol. 11,no. 1, pp. 295–301.

    Article  CAS  Google Scholar 

  21. Muraoka, M. and Yamamoto, Y., Rev. Sci. Instr., 2017, vol. 88,no. 6. Art. 064503.

    Google Scholar 

  22. Stoporev, A.S., Semenov, A.P., Medvedev, V.I., Sizikov, A.A., Gushchin, P.A., Vinokurov, V.A., and Manakov, A.Y., J. Cryst. Growth, 2018, vol. 485, pp. 54–68.

    Article  CAS  Google Scholar 

  23. Gao, S., Energy Fuels, 2008, vol. 22, pp. 3150–3153.

    Article  CAS  Google Scholar 

  24. Aspenes, G., Høiland, S., Borgund, A.E., and Barth, T., Energy Fuels, 2009, vol. 24,no. 1, pp. 483–491.

    Article  CAS  Google Scholar 

  25. Huo, Z., Freer, E., Lamar, M., Sannigrahi, B., Knauss, D. M., and Sloan, E.D. Jr., Chem. Eng. Sci., 2001, vol. 56,no. 17, pp. 4979–4991.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Adamova.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 5, pp. 572–578.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamova, T.P., Manakov, A.Y. & Stoporev, A.S. Laboratory Reactor for Visual Examination of Formation/Decomposition of Gas Hydrates in Water-Oil Systems. Russ J Appl Chem 92, 607–613 (2019). https://doi.org/10.1134/S1070427219050045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219050045

Keywords

Navigation