Skip to main content
Log in

Formation of Thin-Film Electrolyte by Electrophoretic Deposition onto Modified Multilayer Cathode

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Possibility of forming a gas-tight thin-film solid electrolyte by the electrophoretic deposition method on a modified multilayer cathode was examined. The main goal of the study was to find such technological parameters at which the resulting structure of the cathode substrate would make it possible to preserve its porous structure and functional properties after all the stages of deposition and sintering of a defect-free thin-film electrolyte. The electrode materials LaNi0.6Fe0.4O3−δ (LNFO) and La2NiO4+δ (LNO), used to form the electrode-substrate, were produced by the modified Pechini method and the ceramic method. The influence exerted by the specific surface area of the starting LNFO powders, introduction of a pore-forming agent (graphite), and sintering temperature of the cathode substrate on its porosity, gas tightness, and electrical conductivity was examined. The method of cyclic electrophoretic deposition with intermittent calcination stages on a multilayer porous cathode substrate constituted by a 1-mm-thick collector LNFO layer with a deposited functional LNO layer (3–5 µm) was used to form a defect-free thin-film solid electrolyte Ce0.8(Sm0.8Sr0.2)0.2O2−δ (CSSO) (thickness 5 µm, gas-tightness coefficient 0 µm2). A test sample of the cathode substrate preserved its porous structure and gas tightness after calcination cycles. The results obtained can be used to develop a technology for formation of a thin-film electrolyte on porous multilayer cathode substrate, with their porous structure preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vielstich, W., Lamm, A., and Gasteiger, H.A., Handbook of Fuel Cells: Fundamentals, Technology, Applications, Wiley, USA, 2003, vols. 3, 4.

    Google Scholar 

  2. Stambouli, A.B. and Traversa, E.R., Renew. Sust. Energ. Rev., 2002, vol. 6, pp. 433–455.

    Article  CAS  Google Scholar 

  3. Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., and Gauckler, L., J. Solid State Ionics, 2000, vol. 131, pp. 79–96.

    Article  CAS  Google Scholar 

  4. Yushina, L.D., Solid Oxide Electrolyte Films, Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2012.

    Google Scholar 

  5. Dunyushkina, L.A., Introduction into Methods for Obtaining Film Electrolytes for Solid-Oxide Fuel Cells: Monograph, Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2015.

    Google Scholar 

  6. Sadykov, V.A., Usoltsev, V.V., Fedorova, E.Yu., Sobyanin, V.A., Kalinin, P.V., Arzhannikov, A.V., Vlasov, A.Yu., Korobeinikov, M.V., Bryazgin, A.A., Salanov, A.N., Predtechenskii, M.R., Bobrenok, O.F., Ulikhin, A.S., Uvarov, N.F., and Smorygo, O.L., Russ. J. Electrochem., 2011, vol. 47, no. 4, pp. 488–493.

    Article  CAS  Google Scholar 

  7. Beresnev, S.M., Bobrenok, O.F., Kuzin, B.L., Bogdanovich N.M., Kurteeva, A.A., Osinkin, D.A., Vdovin, G.K., and Bronin, D.I., Russ. J. Electrochem., 2012, vol. 48, no. 10, pp. 969–975.

    Article  CAS  Google Scholar 

  8. Zarabian, M., Yar, A.Y., Vafaeenezhad, S., Faghihi Sani, M.A., and Simchi, A., J. Eur. Ceram. Soc., 2013, vol. 33, pp. 1815–1823.

    Article  CAS  Google Scholar 

  9. Srisuwan, A., Wattanasiriwech, D., Wattanasiriwech, S., and Aunkavattana, P., Energy Proc., 2015, vol. 79, pp. 988–993.

    Article  CAS  Google Scholar 

  10. Besra, L. and Liu, M., Progr. Mater. Sci., 2007, vol. 52, pp. 1–61.

    Article  CAS  Google Scholar 

  11. Chen, F. and Liu, M., J. Eur. Ceram. Soc., 2001, vol. 21, pp. 127–134.

    Article  CAS  Google Scholar 

  12. Kalinina, E.G., Lyutyagina, N.A., Safronov, A.P., and Buyanova, E.S., Inorg. Mater., 2014, vol. 50, pp. 184–190.

    Article  CAS  Google Scholar 

  13. Kalinina, E.G., Safronov, A.P., and Kotov, Yu.A., Russ. J. Electrochem., 2011, vol. 47, pp. 671–675.

    Article  CAS  Google Scholar 

  14. Gao, Zh., Mogni, L.V., Miller, E.C., Raolsback, J.G., and Barnett, S.A., Energy Environ. Sci., 2016, vol. 9, pp. 1602–1644.

    Article  CAS  Google Scholar 

  15. Boehm, E., Bassat, J.-M., Dordor, P., Mauvy, F., Grenier, J.-C., and Stevens, Ph., Solid State Ionics, 2005, vol. 176, pp. 2717–2725.

    Article  CAS  Google Scholar 

  16. Shen, Y., Zhao, H., Liu, X., and Xu, N., Phys. Chem. Chem. Phys., 2010, vol. 12, pp. 15124–15131.

    Article  CAS  PubMed  Google Scholar 

  17. Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., Bronin, D.I., Pikalov, S.M., Plaksin S.V., Ananyev, M.V., and Eremin, V.A., Solid State Ionics, 2016, vol. 288, pp. 48–53.

    Article  CAS  Google Scholar 

  18. Woolley, R.J. and Skinner, S.J., Solid State Ionics, 2014, vol. 255, pp. 1–5.

    Article  CAS  Google Scholar 

  19. Sharma, R.K., Burriel, M., Dessemond, L., Martin, V., Bassat, J.-M., and Djurado, E., J. Power Sources, 2016, vol. 316, pp. 17–28.

    Article  CAS  Google Scholar 

  20. Pikalova, E.Yu., Bogdanovich, N.M., Kolchugin, A.A., Ananyev, M.V., and Pankratov, A.A., Solid State Ionics, 2016, vol. 288, pp. 36–42.

    Article  CAS  Google Scholar 

  21. Kalinina, E.G., Lyutyagina, N.A., Leiman, D.V., and Safronov, A.P., Ross. Nanotekhnol., 2014, vol. 9, no. 56, pp. 42–46 (Kalinina, E.G., Lyutyagina, N.A., Leiman, D.V., and Safronov, A.P., Nanotechnol. Russ., 2014, vol. 9, nos. 5–6, pp. 274–279).

    Google Scholar 

  22. Kalinina, E.G., Efimov, A.A., and Safronov, A.P., Thin Solid Films, 2016, vol. 612, pp. 66–71.

    Article  CAS  Google Scholar 

  23. Pikalova, E.Yu., Nikonov, A.V., Zhuravlev, V.D., Bamburov, V.G., Samatov, O.M., Lipilin, A.S., Khrustov, V.R., Nikolaenko, I.V., Plaksin, S.V., and Molchanova, N.G., Inorg. Mater., 2011, vol. 47, no. 4, pp. 396–401.

    Article  CAS  Google Scholar 

  24. Kalinina, E.G., Samatov, O.M., and Safronov, A.P., Inorg. Mater., 2016, vol. 52, no. 8, pp. 858–864.

    Article  CAS  Google Scholar 

  25. Kalinina, E.G., Pikalova, E.Yu., Menshikova, A.V., and Nikolaenko, I.V., Solid State Ionics, 2016, vol. 288, pp. 110–114.

    Article  CAS  Google Scholar 

  26. Pikalova, E.Yu., Bamburov, V.G., Murashkina, A.A., Neuimin, A.D., Demin, A.K., and Plaksin, S.V., Russ. J. Electrochem., 2011, vol. 47, no. 6, pp. 690–696.

    Article  CAS  Google Scholar 

  27. Kalinina, E.G., Pikalova, E.Yu., Kolchugin, A.A., Pikalov, S.M., and Kaigorodov, A.S., Solid State Ionics, 2017, vol. 302, pp. 126–132.

    Article  CAS  Google Scholar 

  28. Kurteeva, A.A., Bogdanovich, N.M., Bronin, D.I., Porotnikova, N.M., Vdovin, G.K., Beresnev, S.M., and Kuz’mina, L.A., Russ. J. Electrochem., 2010, vol. 46, no. 7, pp. 811–819.

    Article  CAS  Google Scholar 

  29. Kurteeva, A.A., Beresnev, S.M., Osinkin, D.A., Kuzin, B.L., Vdovin, G.K., Zhuravlev, V.D., Bogdanovich, N.M., and Bronin, D.I., Russ. J. Electrochem., 2011, vol. 47, no. 12, pp. 1381–1388.

    Article  CAS  Google Scholar 

  30. Sahu, A.K., Ghosh, A., and Suri, A.K., Ceram. Int., 2009, vol. 35, pp. 2493–2497.

    Article  CAS  Google Scholar 

  31. Niwa, E., Uematsu, C., and Hashimoto, T., Mater. Res. Bull., 2013, vol. 48, pp. 1–6.

    Article  CAS  Google Scholar 

  32. Herle, J.V., McEvoy, A.J., and Thampi, K.R., Electrochim. Acta, 1994, vol. 39, no. 1112, pp. 1675–1680.

    Article  Google Scholar 

  33. Hildenbrand, N., Boukamp, B.A., and Nammensma, P., Solid State Ionics, 2011, vol. 192, pp. 12–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kalinina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.G., Bogdanovich, N.M., Bronin, D.I. et al. Formation of Thin-Film Electrolyte by Electrophoretic Deposition onto Modified Multilayer Cathode. Russ J Appl Chem 92, 191–198 (2019). https://doi.org/10.1134/S1070427219020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219020046

Keywords

Navigation