Skip to main content
Log in

Preparation and Properties of MoO3−TiO2−SiO2 Composites with Spherical Shape of Agglomerates

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

MoO3−TiO2−SiO2 composites with spherical shape of agglomerates were prepared by thermal decomposition of TOKEM-400 and TOKEM-840 anion-exchange resins preliminarily loaded with \({\rm{M}}{{\rm{o}}_7}{\rm{OO}}_{24}^{6 -}\) ions with the applied sol based on tetrabutoxytitanium with tetraethoxysilane. The phase and chemical compositions of the composites were determined by X-ray diffraction and electron probe microanalysis. The influence of the resin type on the surface morphology of MoO3−TiO2−SiO2 composites was demonstrated. To obtain the MoO3−TiO2−SiO2 composite with the spherical shape of agglomerates, it is necessary to use TOKEM-400 resin characterized by higher sorption capacity for \({\rm{M}}{{\rm{o}}_7}{\rm{O}}_{24}^{6 -}\). ions due to exchange of the OH− ions of the resin for \({\rm{M}}{{\rm{o}}_7}{\rm{O}}_{24}^{6 -}\). The temperature conditions for preparing spherical MoO3−TiO2−SiO2 composites were suggested. The total capacity and sorption capacity for \({\rm{M}}{{\rm{o}}_7}{\rm{O}}_{24}^{6 -}\) of TOKEM-400 and TOKEM-840 anion-exchange resins were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brykin, A.V., Artemov, A.V., and Kolegov, K.A., Katal. Prom-sti., 2013, no. 4, pp. 7–15.

    Google Scholar 

  2. Shamsutdinova, A.N., Brichkov, A.S., Paukshtis, E.A., Kozik, V.V., Larina, T.V., Cherepanova, S.V., and Glazneva, T.S., Catal. Commun., 2017, vol. 89, pp. 64–68.

    Article  CAS  Google Scholar 

  3. Usachev, N.Ya., Kharlamov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Ross. Khim. Zh. (Zh. Ross. Khim. O-va. im. D.I. Mendeleeva), 2008, vol. LII, no. 4, pp. 22–31.

    Google Scholar 

  4. Dossumov, K., Yergazieva, G.Y., Myltykbaieva, L.K., and Asanov, N.A., Theor. Exp. Chem., 2016, vol. 52, no. 2, pp. 119–122.

    Article  CAS  Google Scholar 

  5. Kuznetsova, S.A., Pichugina, A.A., and Kozik V.V., Inorg. Mater., 2014, vol. 50, no. 4, pp. 387–391.

    Article  CAS  Google Scholar 

  6. Yan, X.-M., Kang, J., Gao, L., Xiong, L., and Mei, P., Appl. Surf. Sci., 2013, vol. 265, pp. 778–783.

    Article  CAS  Google Scholar 

  7. Bykanova, V.V., Kozub, P.A., Bulavin, V.I., and Kozub, S.N., Integr. Tekhnol. Energozber., 2012, vol. 4, pp. 151–157.

    Google Scholar 

  8. Kozyukhin, S.A., Sherchenkov, A.A., Grinberg, V.A., and Ivanov, V.K., Nanomaterialy: svoistva i perspektivnye prilozheniya (Nanomaterials: Properties and Promising Applications), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2014, pp. 240–265.

  9. Kozyukhin, S.A., Ivanov, V.K., Kozik, V.V., and Borilo, L.P., in Materialy Mezhdunarodnoi nauchnoi konferentsii “Polifunktsional’nye khimicheskie materialy i tekhnologii” (Proc. Int. Scientific Conf. “Polyfunctional Chemical Materials and Technologies”), May21–22, 2015, Tomsk: Tomskii Univ., 2015, vol. 1, pp. 95–96.

    Google Scholar 

  10. Tang, H., Li, N., Li, S., Chen, F., Li, G., Wang, A., Cong, Y., Wang, X., and Zhang, T., Catal. Today, 2017, vol. 298, pp. 16–20.

    Article  CAS  Google Scholar 

  11. Pakhomov, N.A. and Buyanov, R.A., Kinet. Catal., 2005, vol. 46, no. 5, pp. 669–683.

    Article  CAS  Google Scholar 

  12. Lee, I., Delbecq, F., Morales, R., Albiter, M.A., and Zaera, F., Nature Mater., 2009, vol. 8, pp. 132–138.

    Article  CAS  Google Scholar 

  13. Christensen, S.T., Feng, H., Libera, J.L., Guo, N., Miller, J.T., Stair, P.C., and Elam, J.W., Nano Lett., 2010, vol. 10, pp. 30471–3051.

    Article  CAS  Google Scholar 

  14. Biradar, A.V., Biradar, A.A., and Asefa, T., Langmuir, 2011, vol. 27, pp. 14408–14418.

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez, R.D., Lopez, T., and Gomez, R., Catal. Today, 1997, vol. 35, pp. 293–317.

    Article  CAS  Google Scholar 

  16. Wang, Y., Biradar, A.V., Duncan, C.T., and Asefa, T., J. Mater. Chem., 2010, vol. 20, pp. 7834–7841.

    Article  CAS  Google Scholar 

  17. Wang, J., Li, X., Zhang, S., and Lu, R., Nanoscale, 2013, vol. 5, pp. 4823–4828.

    Article  CAS  PubMed  Google Scholar 

  18. Chandra, P., Doke, D.S., Umbarkara, S.B., and Birada, A.V., J. Mater. Chem. A, 2014, vol. 2, pp. 19060–19066.

    Article  CAS  Google Scholar 

  19. Verbovenko, I.M., Rychkov, V.N., and Kartashov, V.V., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2014, no. 2, pp. 30–34.

    Google Scholar 

  20. Li, W.-Z., Qin, C.-G., Xiao, W.-M., and Chen, J.-S., J. Solid State Chem., 2005, vol. 178, pp. 390–394.

    Article  CAS  Google Scholar 

  21. Pimneva, L.A., Sovrem. Naukoemk. Tekhnol., 2006, no. 2, pp. 52–53.

    Google Scholar 

  22. Patent US 3438749, Publ. 1989.

  23. Apblett, A.W., Kuriyavar, S.I., and Kiran, B.P., J. Mater. Chem., 2003, vol. 13, no. 5, pp. 983–985.

    Article  CAS  Google Scholar 

  24. Rogacheva, A., Shamsutdinova, A., Brichkov, A. Larina, T., Paukshtis, E., and Kozik, V., AIP Conf. Proc., 2017, vol. 1899, paper 020007.

  25. De Castro, I.A., Datta, R.S., Ou, J.Z., Castellanos-Gomez, A., Sriram, S., Daeneke, T., and Kalantar-zadeh, K., Adv. Mater., 2017, vol. 29, p. 1701619.

    Article  CAS  Google Scholar 

  26. Santos-Beltrán, M., Paraguay-Delgado, F., García, R., Antúnez-Flores, W., Ornelas-Gutiérrez, C., and Santos-Beltrán, A., J. Mater. Sci: Mater. Electron., 2017, vol. 28, pp. 2935–2948.

    Google Scholar 

  27. Liu, K., Huang, X., Pidko, E.A., and Emiel, J.M., Green Chem., 2017, vol. 19, pp. 3014–3022.

    Article  CAS  Google Scholar 

  28. Li, C.-J., Tseng, C.-M., Lai, S.-N., Yang, C.-R., and Hung, W.-H., Nanoscale Res. Lett., 2017, vol. 12, pp. 560–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, X., Cui, W., Chen, M., and Xu, Q., Mater. Lett., 2017, vol. 201, pp. 129–132.

    Article  CAS  Google Scholar 

  30. Bian, L., Wang, S.P., and Ma, X.B., Kinet. Catal., 2014, vol. 55, no. 6, pp. 763–769.

    Article  CAS  Google Scholar 

  31. Kozik, V.V., Brichkov, A.S., Shamsutdinova, A.N., Paukshtis, E.A., Brichkova, V.Y., Parmon, V.N., and Ivanov, V.K., Dokl. Phys. Chem., 2016, vol. 470, no. 2, pp. 154–157.

    Article  CAS  Google Scholar 

  32. Li, Y., Yu, H., Huang, X., Wu, Z., and Xu, H., Solar Energy Mater. Solar Cells, 2017, vol. 171, pp. 72–84.

    Article  CAS  Google Scholar 

  33. Shamsutdinova, A.N. and Kozik, V.V., Khim. Inter. Ustoich. Razv., 2016, vol. 24, no. 5, pp. 699–704.

    CAS  Google Scholar 

  34. Saldadze, K.M. and Kopylova, V.D., Kompleksoobrazuyushchie ionity (Complexing Ion-Exchange Resins), Moscow: Khimiya, 1980.

    Google Scholar 

  35. Polyanskii, N.G., Gorbunov, G.V., and Polyanskaya, N.A., Metody issledovaniya ionitov (Methods for Studying Ion Exchangers), Moscow: Khimiya, 1976.

    Google Scholar 

  36. Busev, A.I., Analiticheskaya khimiya molibdena (Analytical Chemistry of Molybdenum), Moscow: Akad. Nauk SSSR, 1962, pp. 160–161.

    Google Scholar 

  37. Zharkova, V.V., Bobkova, L.A., Bektimirova, K.A., and Kozik, V.V., Izv. Vyssh. Uchebn. Zaved., Fiz., 2014, vol. 57, no. 7/2, pp. 46–52.

    Google Scholar 

  38. Kazenas, E.K. and Chizhikov, D.M., Davlenie i sostav para nad okislami khimicheskikh elementov (Composition and Pressure of Vapor over Oxides of Chemical Elements), Moscow: Nauka, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, S.A., Brichkov, A.S., Lisitsa, K.V. et al. Preparation and Properties of MoO3−TiO2−SiO2 Composites with Spherical Shape of Agglomerates. Russ J Appl Chem 92, 171–180 (2019). https://doi.org/10.1134/S1070427219020010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219020010

Keywords

Navigation