Skip to main content
Log in

Rheological Properties of Chitosan Succinimide in Water-Glycerol Mixed Solvent

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Rheological behavior of chitosan succinimide in water-glycerol mixed solvent was studied. Partial replacement of water by glycerol leads to an increase in the complex viscosity of the polymer in solution, to the formation of the network of intermolecular linkages and transition of the system to the gel state at a lower polymer concentration, to a decrease in the polymer concentration in the solution at which the storage modulus becomes higher than the loss modulus, and to an increase in the relaxation time. The systems formed in the process exhibit the viscosity characteristics stable in time and allow preparation of water-insoluble gel-like materials suitable as a base for soft drug forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murav’ev, I.A., Tekhnologiya lekarstv (Drug Technology), Moscow: Meditsina, 1980, 3rd ed., vol. 2.

  2. Marchenko, L.G., Rusak, A.V., and Smekhova, I.E., Tekhnologiya myagkikh lekarstvennykh form (Technology of soft drug forms), St. Petersburg: SpetsLit, 2004.

    Google Scholar 

  3. Karadag, E., Saraydin, D., Centinkaya, S., and Guven, O., Biomaterials, 1996, vol. 17, pp. 67–70.

    Article  CAS  PubMed  Google Scholar 

  4. Akala, E.O., Kopeckova, P., and Kopecek, J., Biomaterials, 1998, vol. 19, pp. 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  5. Blanco, M.D., Garcia, O., Trigo, R.M., Teijon, J.M., and Katime, I., Biomaterials, 1996, vol. 17, pp. 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  6. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Vysshaya Shkola, 2004, 3rd ed.

    Google Scholar 

  7. Sivakumar, M. and Paduranga Rao, K., J. Appl. Polym. Sci., 2002, vol. 83, no. 14, pp. 3045–3054.

    Article  CAS  Google Scholar 

  8. Yin, Y., Yang, Y., and Xu, H., J. Appl. Polym. Sci., 2002, vol. 83, no. 13, pp. 2835–2842.

    Article  CAS  Google Scholar 

  9. Hoffman, A.S., Polymers in Medicine and Surgery, Kronenthal, R.L., Oser, Z., and Martin, E., Eds., New York: Plenum, 1975, pp. 33–44.

  10. Hydrogels in Medicine and Pharmacy, Peppas, N.A., Ed., Boca Raton, Florida: CRC, 1987, vol. 3.

  11. Bell, C.L. and Peppas, N.A., Adv. Polym. Sci., 1995, vol. 122, pp. 125–176.

    Article  CAS  Google Scholar 

  12. Chuang, W.Y., Young, T.H., Yao, C.H., and Chiu, W.Y., Biomaterials, 1999, vol. 20, pp. 1479–1487.

    Article  CAS  PubMed  Google Scholar 

  13. Park, H. and Park, K., Hydrogels and Biodegradable Polymers for Bioapplications, Ottenbrite, R.M., Huang, S.J., and Park, K., Eds., vol. 627 of ACS Symp. Ser., Washington, DC: ACS, 1996, pp. 2–10.

  14. Rabea, E.I., Badawy, M.E.T., and Stevens, C.V., Biomacromolecules, 2003, no. 4, pp. 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  15. Papkov, S.P., Studneobraznoe sostoyanie polimerov (Gel-Like State of Polymers), Moscow: Khimiya, 1974.

    Google Scholar 

  16. Tanaka, T., Encyclopedia of Polymer Science and Engineering, Klingsberg, A. and Piccinini, P., Eds., New York: Wiley, 1985, vol. 7.

  17. Rogovina, L.Z., Vasil’ev, V.G., and Braudo, E.E., Polym. Sci., Ser. C, 2008, vol. 50, no. 1, pp. 85–92.

    Article  Google Scholar 

  18. Nijenhuis, K. te, Adv. Polym. Sci., 1997, vol. 130, pp. 1–252.

    Article  Google Scholar 

  19. Clark, A.H. and Ross-Murhy, S.B., Adv. Polym. Sci., 1987, vol. 83, pp. 57–192.

    Article  CAS  Google Scholar 

  20. Ross-Murhy, S.B., Polymer Gels, Rossi, D. De, Kajiwara, K., Osada, Y., and Yamauchi, A., Eds., New York: Plenum, 1991, pp. 21–39.

  21. Shchegolikhina, O.I., Vasil’ev, V.G., Rogovina, L.Z., Levin, V.Yu., Zhdanov, A.A., and Slonimskii, G.L., Vysokomol. Soedin., Ser. A, 1991, vol. 33, no. 11, pp. 2370–2375.

    CAS  Google Scholar 

  22. Stadler, R., Macromolecules, 1988, vol. 21, no. 1, pp. 121–129.

    Article  CAS  Google Scholar 

  23. Suresh, S., Painter, P.C., and Coleman, M.M., Polymer, 1999, vol. 40, no. 17, pp. 4853–4863.

    Article  Google Scholar 

  24. Mochalova, A.E., Smirnova, L.A., Semchikov, Yu.D., Kir’yanov, K.V., Drozdov, Y.N., and Prusakova, I.I., Polym. Sci., Ser A, 2005, vol. 47, no. 6, pp. 614–621.

    Google Scholar 

  25. Skorikova, E.E., Kalyuzhnaya, R.I., Kotova, S.L., Ageev, E.P., Zezin, A.B., Kabanov, V.A., Vikhoreva, G.A., and Gal’braikh, L.S., Polym. Sci., Ser. A, 1996, vol. 38, no. 1, pp. 49–53.

    Google Scholar 

  26. Alekseev, V.L., Kel’berg, E.A., Bronnikov, S.V., and Evmenenko, G.A., Polym. Sci., Ser. B, 2001, vol. 43, nos. 9–10, pp. 281–284.

    Google Scholar 

  27. Litmanovich, E.A., Orleneva, A.P., Korolev, B.A., Kasaikin, V.A., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2000, vol. 42, no. 6, pp. 689–690.

    Google Scholar 

  28. Tager, A.A., Dreval’, V.E., Kurbanaliev, M., Lutskii, M.S., Berkovits, N.E., Granovskaya, I.M., and Charikova, T.A., Vysokomol. Soedin., Ser. A, 1968, vol. 10, no. 9, pp. 2044–2057.

    CAS  Google Scholar 

  29. Tager, A.A., Dreval’, V.E., Botvinnik, G.O., Kenina, S.B., Novitskaya, V.I., Sidorova, L.K., and Usol’tseva, T.A., Vysokomol. Soedin., Ser. A, 1972, vol. 14, no. 6, pp. 1381–1390.

    CAS  Google Scholar 

  30. Ilyin, S.O., Kulichikhin, V.G., and Malkin, A.Ya., Polym. Sci., Ser. A, 2013, vol. 55, no. 8, pp. 503–506.

    Article  CAS  Google Scholar 

  31. Bazunova, M.V., Valiev, D.R., Chernova, V.V., and Kulish, E.I., Polym. Sci., Ser. A, 2015, vol. 57, no. 5, pp. 675–680.

    Article  CAS  Google Scholar 

  32. Ferry, J.D., Viscoelastic Properties of Polymers, New York: Wiley, 1980.

    Google Scholar 

  33. Bazunova, M.V., Shurshina, A.S., Chernova, V.V., and Kulish, E.I., Russ. J. Phys. Chem. B, 2016, vol. 10, no. 6, pp. 1014–1021.

    Article  CAS  Google Scholar 

  34. Mironov, A.V., Vikhoreva, G.A., Kil’deeva, N.R., and Uspenskii, S.A., Polym. Sci., Ser. B, 2007, vol. 49, nos. 1–2, pp. 15–17.

    Article  Google Scholar 

  35. Vikhoreva, G.A., Rogovina, S.Z., Pchelko, O.M., and Gal’braikh, L.S., Polym. Sci., Ser. B, 2001, vol. 43, nos. 5–6, pp. 166–170.

    Google Scholar 

  36. Abramov, A.Y., Kozyreva, E.V., and Shipovskaya, A.B., Eur. J. Natural History, 2013, no. 1, pp. 30–35.

    Google Scholar 

  37. Korchagina, E.V. and Philippova, O.E., Biomacromolecules, 2010, vol. 11, no. 12, pp. 3457–3466.

    Article  CAS  PubMed  Google Scholar 

  38. Zamani, A. and Taherzadeh, M.J., Bio Resources, 2010, vol. 5, no. 3, pp. 1554–1564.

    CAS  Google Scholar 

  39. Kulish, E.I., Chernova, V.V., Volodina, V.P., and Kolesov, S.V., Polym. Sci., Ser. A, 2015, vol. 57, no. 5, pp. 508–514.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Lazdin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazdin, R.Y., Chernova, V.V., Bazunova, M.V. et al. Rheological Properties of Chitosan Succinimide in Water-Glycerol Mixed Solvent. Russ J Appl Chem 92, 50–56 (2019). https://doi.org/10.1134/S1070427219010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219010075

Keywords

Navigation