Skip to main content
Log in

Study of Copper-Iron Mixed Oxide with Cubic Spinel Structure, Synthesized by the Combustion Method

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The interest in synthesis and study of properties of complex oxides is due to their wide use in various fields of materials science and catalysis. A copper-iron mixed oxide with cubic spinel structure was synthesized in the combustion mode with local initiation of a glycine nitrate precursor compacted into pellets. A new result was obtained about the positive influence exerted by addition of ammonia to the precursor, which led to a decrease in its combustion rate and to an increase in the content of the spinel from 34 to 80% without an additional stage of high-temperature calcination. The study determined (X-ray diffraction analysis, differentiating dissolution, ATR IR spectroscopy, including the near-IR spectral range) the stoichiometry of copper and iron in the copper ferrite phase and found the content of spinel in the combustion product. The effect of the reducing conditions in the combustion zone on characteristics of the product being formed was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balagurov, A.M., Bobrikov, I.A., Maschenko, M.S., Sangaa, D., and Simkin, V.G., Crystallogr. Rep., 2013, vol. 58, no. 5, pp. 710–717.

    Article  CAS  Google Scholar 

  2. Yadav, R.S., Kuřitka, I., Vilcakova, J., Havlica, J., Masilko, J., Kalina, L., Tkacz, J., Hajdúchová, M., and Enev, V., J. Mater. Sci. Mater. Electron., 2017, vol. 28, no. 8, pp. 6245–6261.

    Article  CAS  Google Scholar 

  3. Casbeer, E., Sharma, V.K., and Li, X.Z., Sep. Purif. Technol., 2012, vol. 87, pp. 1–14.

    Article  CAS  Google Scholar 

  4. Tang, M., Xia, F., Gao, C., and Qiu, H., Int. J. Hydrogen Energy, 2016, vol. 41, no. 30, pp. 13058–13068.

    Article  CAS  Google Scholar 

  5. Kenfack, F. and Langbein, H., Cryst. Res. Technol., 2004, vol. 39, no. 12, pp. 1070–1079.

    Article  CAS  Google Scholar 

  6. Merzhanov, A.G., Russ. Chem. Rev., 2003, vol. 72, no. 4, pp. 289–310.

    Article  CAS  Google Scholar 

  7. Rogachev, A.S. and Mukas’yan, A.S., Gorenie dlya sinteza materialov (Combustion for Synthesis of Materials), Moscow: Fizmatlit, 2013.

    Google Scholar 

  8. Sutka, A. and Mezinskis, G., Front. Mater. Sci., 2012, vol. 6, no. 2, pp. 128–141.

    Article  Google Scholar 

  9. Popkov, V.I., Almjasheva, O.V., and Gusarov, V.V., Russ. J. Appl. Chem., 2014, vol. 87, no. 10, pp. 1417–1421.

    Article  CAS  Google Scholar 

  10. Komlev, A.A. and Vilezhaninov, E.F., Russ. J. Appl. Chem., 2013, vol. 86, no. 9, pp. 1344–1350.

    Article  CAS  Google Scholar 

  11. Dyachenko, S.V., Martinson, K.D., Cherepkova, I.A., and Zhernovoi, A.I., Russ. J. Appl. Chem., 2016, vol. 89, no. 4, pp. 535–539.

    Article  CAS  Google Scholar 

  12. Komlev, A.A. and Gusarov, V.V., Inorg. Mater., 2014, vol. 50, no. 12, pp. 1247–1251.

    Article  CAS  Google Scholar 

  13. Khaliullin, S.M., Zhuravlev, V.D., Russkikh, O.V., Ostroushko, A.A., and Bamburov, V.G., Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 2, pp. 83–88.

    Article  CAS  Google Scholar 

  14. Mukasyan, A.S., Epstein, P., and Dinka, P., Proc. Combust. Inst., 2007, vol. 31, no. 2, pp. 1789–1795.

    Article  CAS  Google Scholar 

  15. Costa, A.F., Pimentel, P.M., Aquino Melo, D.M.A., Melo, M.A.F., and Santos, I.M.G., Mater. Lett., 2013, vol. 112, pp. 58–61.

    Article  CAS  Google Scholar 

  16. Köferstein, R., Walther, T., Hesse, D., and Ebbinghaus, S.G., J. Solid State Chem., 2014, vol. 213, pp. 57–64.

    Article  CAS  Google Scholar 

  17. Yadav, R.S., Havlica, J., Masilko, J., and Kalina, L., J. Supercond. Nov. Magn., 2015, vol. 29, no. 3, pp. 759–769.

    Article  CAS  Google Scholar 

  18. Xu, Z.-X., Xu, G.-S., Fu, X.-Q., and Wang, Q., Nanomater. Nanotechnol., 2016, vol. 6, pp. 1–10.

    Article  CAS  Google Scholar 

  19. Komova, O.V., Mukha, S.A., Netskina, O.V., Odegova, G.V., Pochtar, A.A., Ishchenko, A.V., and Simagina, V.I., Ceram. Int., 2015, vol. 41, no. 1, Part B, pp. 1869–1878.

    Article  CAS  Google Scholar 

  20. Komova, O.V., Simagina, V.I., Mukha, S.A., Netskina, O.V., Odegova, G.V., Bulavchenko, O.A., Ishchenko, A.V., and Pochtar’, A.A., Adv. Powder Technol., 2016, vol. 27, no. 2, pp. 496–503.

    Article  CAS  Google Scholar 

  21. Simagina, B.I., Komova, O.V., Netskina, O.V., Odegova, G.V., Bulavchenko, O.A., and Ishchenko, A.V., Al’tern. Energ. Ekol., 2017, nos. 25–27, pp. 27–71.

    Google Scholar 

  22. Chatterjee, B.K., Bhattacharjee, K., Dey, A., Ghosh, C.K., and Chattopadhyay, K.K., Dalt. Trans., 2014, vol. 43, no. 21, pp. 7930–7944.

    Article  CAS  Google Scholar 

  23. Tasca, J.E., Quincoces, C.E., Lavat, A., Alvarez, A.M., and González, M.G., Ceram. Int., 2011, vol. 37, no. 3, pp. 803–812.

    Article  CAS  Google Scholar 

  24. Kongkaew, T. and Sakurai, K., Chem. Lett., 2017, vol. 46, no. 10, pp. 1493–1496.

    Article  CAS  Google Scholar 

  25. Selvan, R.K., Augustin, C.O., Berchmans, L.J., and Saraswathi, R., Mater. Res. Bull., 2003, vol. 38, no. 1, pp. 41–54.

    Article  CAS  Google Scholar 

  26. Iqbal, M.J., Yaqub, N., Sepiol, B., and Ismail, B., Mater. Res. Bull., 2011, vol. 46, no. 11, pp. 1837–1842.

    Article  CAS  Google Scholar 

  27. Shetty, K., Renuka, L., Nagaswarupa, H.P., Nagabhushana, H., Anantharaju, K.S., Rangappa, D., Prashantha, S.C., and Ashwini, K., Mater. Today Proc., 2017, vol. 4, no. 11, pp. 11806–11815.

    Article  Google Scholar 

  28. Pongpadung, S., Kamwanna, T., and Amornkitbamrung, V., J. Korean Phys. Soc., 2016, vol. 68, no. 5, pp. 697–704.

    Article  CAS  Google Scholar 

  29. Deraz, N.M., J. Alloys Compd., 2010, vol. 501, no. 2, pp. 317–325.

    Article  CAS  Google Scholar 

  30. Gingaşu, D., Mîndru, I., Patron, L., Carp, O., Matei, D., Neagoe, C., and Balint, I., J. Alloys Compd., 2006, vol. 425, nos. 1–2, pp. 357–361.

    Google Scholar 

  31. Hosseini, S.N., Enayati, M.H., Karimzadeh, F., and Sammes, N.M., Int. Sch. Sci. Res. Innov., 2015, vol. 9, no. 7, pp. 857–860.

    Google Scholar 

  32. Chiu, T.-W. and Huang, P.-S., Ceram. Int., 2013, vol. 39, Suppl. 1, pp. S575–S578.

    Article  CAS  Google Scholar 

  33. Straughan, B.P. and Lam, O.M., Inorg. Chim. Acta, 1985, vol. 98, no. 1, pp. 7–10.

    Article  CAS  Google Scholar 

  34. Tucker, W.F., Asplund, R.O., and Holt, S.L., Arch. Biochem. Biophys., 1975, vol. 166, no. 2, pp. 433–438.

    Article  CAS  PubMed  Google Scholar 

  35. Ghazaryan, V.V., Fleck, M., and Petrosyan, A.M., J. Mol. Struct., 2010, vol. 977, nos. 1–3, pp. 117–129.

    Article  CAS  Google Scholar 

  36. Kang, K.-S., Kim, C.-H., Cho, W.-C., Bae, K.-K., Woo, S.-W., and Park, C.-S., Int. J. Hydrogen Energy, 2008, vol. 33, no. 17, pp. 4560–4568.

    Article  CAS  Google Scholar 

  37. Wang, B., Yan, R., Zhao, H., and Zheng, Y., Energy Fuels, 2011, vol. 25, no. 7, pp. 3344–3354.

    Article  CAS  Google Scholar 

  38. Estrella, M., Barrio, L., Zhou, G., Wang, X., Wang, Q., Wen, W., Hanson, J.C., Frenkel, A.I., and Rodriguez, J.A., J. Phys. Chem. C, 2009, vol. 113, no. 32, pp. 14411–14417.

    Article  CAS  Google Scholar 

  39. Thapa, D., Kulkarni, N., Mishra, S.N., Paulose, P.L., and Ayyub, P., J. Phys. D: Appl. Phys., 2010, vol. 43, no. 19, p. 195004.

    Article  CAS  Google Scholar 

  40. Roy, S. and Ghose, J., Mater. Res. Bull., 1999, vol. 34, nos. 10–11, pp. 1805–1811.

    Article  CAS  Google Scholar 

  41. Nanba, N., J. Appl. Phys., 1978, vol. 49, no. 5, pp. 2950–2952.

    Article  CAS  Google Scholar 

  42. Park, S., Ishikawa, T., and Tokura, Y., Phys. Rev. B, 1998, vol. 58, no. 7, pp. 3717–3720.

    Article  CAS  Google Scholar 

  43. Kim, K.J., Lee, J.H., and Lee, S.H., J. Magn. Magn. Mater., 2004, vol. 279, nos. 2–3, pp. 173–177.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A.V. Derbilina for the sample preparation and N.A. Rudina for studying samples by scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Komova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simagina, V.I., Komova, O.V., Odegova, G.V. et al. Study of Copper-Iron Mixed Oxide with Cubic Spinel Structure, Synthesized by the Combustion Method. Russ J Appl Chem 92, 20–30 (2019). https://doi.org/10.1134/S1070427219010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219010038

Keywords

Navigation