Skip to main content
Log in

Photocatalytic Properties of Hollow BiFeO3 Spheres

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Single-phase hollow bismuth ferrite microspheres ∼1 µm in diameter were synthesized by ultrasonic spray pyrolysis in a stream of air or argon. All the samples exhibited photocatalytic activity exceeding that of the standard TiO2 catalyst under UV irradiation. The samples synthesized in an argon stream exhibit catalytic activity under irradiation with a blue light. A comprehensive study showed that the appearance of the catalytic activity under the action of visible light was not associated with the powder particle morphology, oxygen defectiveness, and a change in the band gap width. An X-ray photoelectron spectroscopic study revealed decreased content of adsorbed oxygen on the surface of BiFeO3 synthesized in an argon stream. Possible mechanisms responsible for the appearance of the photocatalytic activity in the visible range are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McDonnell, K.A., Wadnerkar, K.A.N., English, N.J., Rahman, M., and Dowling, D., Chem. Phys. Lett., 2013, vol. 572, pp. 78–84.

    Article  CAS  Google Scholar 

  2. Gao, T., Chen, Z., Huang, Q., Niu, F., Huang, X., Qin, L., and Huang, Y., Rev. Adv. Mater. Sci., 2015, vol. 40, pp. 97–109.

    CAS  Google Scholar 

  3. Soltani, T. and Entezari, M.H., Chem. Eng. J., 2013, vol. 223, pp. 145–154.

    Article  CAS  Google Scholar 

  4. Banerjee, S., Mohapatra, S.K., and Misra, M., Chem. Commun., 2009, vol. 46, pp. 7137–7143.

    Article  CAS  Google Scholar 

  5. Mohapatra, S.K., John, S.E., Banerjee, S., and Misra, M., Chem. Mater., 2009, vol. 21, pp. 3048–3053.

    Article  CAS  Google Scholar 

  6. Wang, X., Lin, Y., Zhang, Z.C., and Bian, J.Y., J. Sol-Gel Sci. Technol., 2011, vol. 60, pp. 1–9.

    Article  CAS  Google Scholar 

  7. Zhu, X., Hang, Q., Xing, Z., Yang, Y., Zhu, J., Liu, Z., Ming, N., Zhou, P., Song, Y., Li, Z., Yu, T., and Zou, Z., J. Am. Ceram. Soc., 2011, vol. 94, pp. 2688–2694.

    Article  CAS  Google Scholar 

  8. Dmitriev, A.V., Vladimirova, E.V., Kandaurov, M.V., Kellerman, D.G., Chufarov, A.Yu., and Tyutyunnik, A.P., J. Alloys Compd., 2018, vol. 743, pp. 654–657.

    Article  CAS  Google Scholar 

  9. Danks, A.E., Hallb, S.R., and Schnepp, Z., Mater. Horiz., 2016, vol. 3, pp. 91–112.

    Article  CAS  Google Scholar 

  10. Hu, Y., Fei, L., Zhang, Y., Yuan, J., Wang, Y., and Gu, H., J. Nanomater., 2011, vol. 797639, pp. 1–6.

    Article  CAS  Google Scholar 

  11. Ortiz-Quiñonez, J.L., Diaz, D., Zumeta-Dube, I., Arriola-Santamaría, H., Betancourt, I., Santiago-Jacinto, P., and Nava-Etzana, N., Inorg. Chem., 2013, vol. 52, pp. 10306–10317.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, H., Zhou, J., Liang, L., Li, L., and Zhu, X., J. Nanomater., 2014, vol. 471485, pp. 1–14.

    Google Scholar 

  13. Dmitriev, A.V., Vladimirova, E.V., Kandaurov, M.V., Chufarov, A.Yu., and Kellerman, D.G., Phys. Solid State, 2017, vol. 59, no. 12, pp. 2360–2364.

    Article  CAS  Google Scholar 

  14. Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York: Wiley-Interscience, 1974.

    Google Scholar 

  15. Selbach, S.M., Tybell, T., Einarsrud, M.-A., and Grande, T., Chem. Mater., 2007, vol. 19, pp. 6478–6484.

    Article  CAS  Google Scholar 

  16. Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., and McIntyre, N.S., Surf. Interface Anal., 2004, vol. 36, no. 12, pp. 1564–1574.

    Article  CAS  Google Scholar 

  17. Xu, Q., Sheng, Y., Khalid, M., Cao, Y., Wang, Y., Qiu, X., Zhang, X., He, M., Wang, S., Zhou, S., Li, Q., Wu, D., Zhai, Y., Liu, W., Wang, P., Xu, Y.B., and Du, J., Sci. Rep, 2015, vol. 5, no. 9093.

    Google Scholar 

  18. Bocquet, A.E., Fujimori, A., Mizokawa, T., Saitoh, T., Namatame, H., Suga, S., Kimizuka, S., Takeda, Y., and Takano, M., Phys. Rev. B, 1992, vol. 45, pp. 1561–1571.

    Article  CAS  Google Scholar 

  19. Kozakov, A.T., Guglev, K.A., Ilyasov, V.V., Ershov, I.V., Nikol’skii, A.V., Smotrakov, V.G., and Eremkin, V.V., Phys. Solid State, 2011, vol. 53, no. 1, pp. 41–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

X-ray diffraction studies were performed at the X-ray Diffraction Analysis Center for Shared Use at the Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences. The UV, visible, and near-IR absorption spectra were recorded with a UV-2600 spectrometer at the Spectroscopy and Analysis of Organic Compounds Center for Shared Use at the Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dmitriev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.V., Vladimirova, E.V., Kandaurov, M.V. et al. Photocatalytic Properties of Hollow BiFeO3 Spheres. Russ J Appl Chem 92, 113–121 (2019). https://doi.org/10.1134/S10704272190100166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10704272190100166

Keywords

Navigation