Skip to main content
Log in

Tunable Excitation-Dependent Photoluminescences Using Energy Gap Regulating Photogenerated Electrons Injection Rate from Excited TiO2 Nanoparticles to MoS2 Nanosheets

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Control of the photogenerated electrons transfer rate from TiO2 nanoparticles to MoS2 nanosheets is an effective method for modulating the optical property of 2‒3 layers MoS2 nanosheets. In this paper, core-shell structure MoS2/polyvinyl benzyl mercaptan sub-microspheres (PS) with vertical 2‒3 layers MoS2 nanosheets on the PS surface were prepared via solvothermal process. Core-shell structure MoS2/PS microspheres show excitation-dependent photoluminescence. It is worth noting excitation- dependent photoluminescences can be tuned via a TiO2 nanoparticles doping technique. With decreasing sizes of doping TiO2 nanoparticles from 10.1 to 2.8 nm the intensities of the excitation- dependent photoluminescence (PL) were drastically enhanced approximately 1.2‒3.2 times and the average PL lifetimes are prolonged from 131 to 344 ps. The experimental results provide strong evidence with respect to control of the band energies, that is one of effective methods to accelerate photogenerated electrons transfer from excited TiO2 nanoparticles to MoS2 nanosheets for controlling the optical properties of 2‒3 layers MoS2 nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, S.H, Lee, Y, Jang, S.K, Kang, J., Jeon, J., Lee, C., Lee, J.Y, Kim, H., Wang, E., Lee, S., and Cho, J.H., ACS Nano, 2014, vol. 8, pp. 8285–8291.

    Article  CAS  PubMed  Google Scholar 

  2. Perkins, F.K, Friedman, A.L.E, Cobas, P.M, Campbell,.G.G, and Jernigan, B.T., Nano Lett. 2013, vol. 13, pp. 668–673.

    Article  CAS  Google Scholar 

  3. Sundaram, R.S, Engel, M., Lombardo, A., Krupke, R., Ferrari, A.C, Avouris, P.H., and Steiner, M., Nano Lett. 2013, vol. 13, pp. 1416–1421.

    Article  CAS  PubMed  Google Scholar 

  4. Chou, S.S, De, M., Kim, J., Byun, S., Dykstra, C., Yu, J., Huang, J., and Dravid, V.P., J. Am. Chem. Soc., 2013, vol. 135, pp. 4584–4587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, C., Zeng, Z., Li, H., Li, F., Fan, C., and Zhang, H., J. Am. Chem. Soc., 2013, vol. 135, pp. 5998–6001.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, S., Zeng, Z., He, Q., Wang, Z., Wang, S.J, Du, Y., Yin, Z., Sun, X., Chen, W., and Zhang, H., Small 2012, vol. 8, pp. 2264–2270.

    Article  CAS  PubMed  Google Scholar 

  7. Ou, J.Z, Chrimes, A.F, Wang, Y., Tang, S., Strano, M.S, and Kourosh, K., Nano Lett. 2014, vol. 14, pp. 857–863.

    Article  CAS  PubMed  Google Scholar 

  8. Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B, Eda, G., and Chhowalla, M., Nano Lett. 2013, vol. 13, pp. 6222–6227.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, N., Gan, S., Wu, T., Ma, W., Han, D., and Niu, L., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 12193–12202.

    Article  CAS  PubMed  Google Scholar 

  10. Fontana, M., Deppe, T., Boyd, A.K., Rinzan, M., Liu, A.Y., Paranjape, M., and Barbara, P., Sci. Rep. 2013, vol. 3, pp. 1634(1)−1634(5).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng, J., Qian, X., Huang, C.-W, and Li, J., Nat. Photonics, 2012, vol. 6(12), pp. 866−872.

    Google Scholar 

  12. Lee, H.S, Min, S.W, Chang, Y.G, Park, M.K, Nam, T., Kim, H., Kim, J.H, Ryu, S., and Im, S., Nano Lett., 2012, vol. 12(7), pp. 3695−3700.

    Google Scholar 

  13. Sundaram, R.S., Engel, M., Lombardo, A., Krupke, R., Ferrari, A.C, Avouris, P., and Steiner, M., Nano Lett., 2013, vol. 13(4), pp. 1416−1421.

    Google Scholar 

  14. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., and Wang, F., Nano Lett. 2010, vol. 10, pp. 1271–1275.

    Article  CAS  PubMed  Google Scholar 

  15. Chu, T., Ilatikhameneh, H., Klimeck, G., Rahman, R., and Chen, Z., Nano Lett. 2015, vol. 15, pp. 8000–8007.

    Article  CAS  PubMed  Google Scholar 

  16. Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., and Chhowalla, M., Nano Lett. 2011, vol. 11, pp. 5111–5116.

    Article  CAS  PubMed  Google Scholar 

  17. Mak, K.F, He, K., Lee, C., Lee, G.H.. Hone, J., Heinz, T.F., and Shan, J., Nat. Mater., 2013 vol. 12, pp. 207–211.

    Google Scholar 

  18. Mouri, S., Miyauchi, Y., and Matsuda, K., Nano Lett. 2013, vol. 13, pp. 5944–5948.

    Article  CAS  PubMed  Google Scholar 

  19. Newaz, A.K.M., Prasai, D., Ziegler, J.I., Caudel, D., Robinson, S., Haglund, R.F, and Bolotin, K.I., Solid State Commun. 2013, vol. 155, pp. 49–52.

    Article  CAS  Google Scholar 

  20. Tongay, S., Zhou, J., Ataca, C., Liu, J., Kang, J.S., Matthews, T.S., You L, Li J.B., Grossman, J.C., and Wu, J., Nano Lett., 2013, 13, pp. 2831–2836.

    Google Scholar 

  21. Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Pantelides, S.T., and Bolotin, K.I., Nano Lett. 2013, vol. 13, pp. 3626–3630.

    Article  CAS  PubMed  Google Scholar 

  22. Steinhoff, A., Kim, J.-H., Jahnke, F., Rö sner, M., Kim, D.-S., Lee, C., Han, G.H., Jeong, M.S., Wehling, T.O., and Gies, C., Nano Lett., 2015, vol. 15, pp. 6841–6847.

    Article  CAS  PubMed  Google Scholar 

  23. Stengl, V. and Henych, J., Nanoscale 2013, vol. 5, pp. 3387–3394.

    Article  CAS  PubMed  Google Scholar 

  24. Gopalakrishnan, D., Damien, D., and Shaijumon, M.M., ACS Nano, 2014, vol. 8 (5), pp. 5297–5303.

    Article  CAS  PubMed  Google Scholar 

  25. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., and Wang, F., Nano Lett., 2010, vol. 10 (4), pp. 1271−1275.

    Google Scholar 

  26. Mak, K.F, Lee, C., Hone, J., Shan, J., and Heinz, T.F., Phys. Rev. Lett., 2010, vol. 105(13), pp. 136805(1)−136805(4).

    Google Scholar 

  27. Zhou, K., Zhu, Y., Yang, X., Zhou, J., and Li, C., ChemPhysChem. 2012, vol. 13, pp. 699–702.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Q.H., Kalantar-zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S., Nat. Nanotechnol. 2012, vol. 7, pp. 699–712.

    Article  CAS  PubMed  Google Scholar 

  29. Lin, J.D., Han, C., Wang, F., Wang, R., Xiang, D., Qin, S., Zhang, X., Wang, L., Zhang, H., Wee, A.T.S., and Chen, W., ACS Nano, 2014, vol. 8(5), pp. 5323–5329.

    Google Scholar 

  30. Yuan, Y., Ye, Z., Lu, H., Hu, B., Li, Y., Chen, D., Zhong, J., Yu, Z., and Zou, Z., ACS Catal., 2016, vol. 6, pp. 532–541.

    Article  CAS  Google Scholar 

  31. Ma, B., Guan, P., Li, Q., Zhang, M., and Zang, S., ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 26794–26800.

    Article  CAS  PubMed  Google Scholar 

  32. Balasubramanian, S., Wang, P., Schaller, R.D, Rajh, T., and Rozhkova, E.A., Nano Lett. 2013, vol. 13, pp. 3365–3371.

    Article  CAS  PubMed  Google Scholar 

  33. King, L.A., Zhao, W., Chhowalla, M., Riley, D.J., and Eda, G.Y., J. Mater. Chem. A, 2013, vol. 1(31), pp. 8935−8941.

    Google Scholar 

  34. Han, S.W., Kwon, H., Kim, S.K., Ryu, S., Yun, W.S., Kim, D.H., Hwang, J.H., Kang, J.S., Baik, J., Shin, H.J., and Hong, S.C., Phys. Rev. B: Condens. Matter Mater. Phys. 2011, vol. 84, p. 045409.

    Article  CAS  Google Scholar 

  35. Marcus, R.A., J. Chem. Phys., 1965, vol. 43, pp. 679–700.

    Article  CAS  Google Scholar 

  36. Robel, I., Kuno, M., and Kamat, P.V., J. Am. Chem. Soc., 2007, vol. 129, pp. 4136–4137.

    Article  CAS  PubMed  Google Scholar 

  37. Norris, D.J. and Bawendi, M.G., Phys. Rev. B 1996, vol. 53, pp. 16338–16346.

    Article  CAS  Google Scholar 

  38. Satoh, N., Nakashima, T., Kamikura, K., and Yamamoto, K., Nat. Nanotechnol. 2008, vol. 3, pp. 106–111.

    Article  CAS  PubMed  Google Scholar 

  39. Lin, K., Chuang, C., Lee, Y., Li, F., and Chang, Y., J. Phys. Chem. C, 2012, vol. 116, pp. 1550–1555.

    Article  CAS  Google Scholar 

  40. Anusorn, K., Kevin, T., Kensuke, T., Masaru, K., and Prashant, V.K., J. Am. Chem. Soc., 2008, vol. 130, pp. 4007–4015.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchun Zhao.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q. Tunable Excitation-Dependent Photoluminescences Using Energy Gap Regulating Photogenerated Electrons Injection Rate from Excited TiO2 Nanoparticles to MoS2 Nanosheets. Russ J Appl Chem 91, 2012–2021 (2018). https://doi.org/10.1134/S1070427218120133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218120133

Keywords

Navigation