Skip to main content
Log in

Effect of Process Features and Parameters of Preparation of a Nickel Catalyst by Reduction of Nickel Nitrate with Hexamethylenetetramine on the Catalyst Performance in Synthesis of Nanofibrous Carbon

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A promising method based on solution combustion was considered for preparing a catalyst for the synthesis of nanofibrous carbon and hydrogen. The temperature profile of the hexamethylenetetramine combustion front in the bulk of the catalyst precursor is presented on the basis of process imaging. Catalyst samples were tested in a quartz tubular reactor at a temperature of 550°С and a pressure of 1 atm with methane as reaction medium. The influence exerted by the procedure for introducing hexamethylenetetramine into the nitrate base of the catalyst on the performance of the catalyst precursor in synthesis of nanofibrous carbon was studied. The catalyst was obtained as solid foam-like agglomerate (mean size of NiO particles 13.8–35.2 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muradov, N.Z., Int. J. Hydrogen Energy, 1993, vol. 18, pp. 211–215.

    Article  CAS  Google Scholar 

  2. Kurmashov, P.B., Bannov, A.G., Dyukova, K.D., Netskina, O.V., Ukhina, A.V., and Kuvshinov, G.G., Khim. Prom–st. Segodnya, 2014, vol. 8, pp. 6–17.

    Google Scholar 

  3. Mishakov, I.V., Buyanov, R.A., Chesnokov, V.V., Strel’tsov, I.A., and Vedyagin, A.A., Katal. Prom–sti., 2008, vol. 2, pp. 26–31.

    Google Scholar 

  4. Kuvshinov, G.G., Zavarukhin, S.G., Mogil’nykh, Yu.I., and Kuvshinov, D.G., Khim. Prom–st., 1998, vol. 5, pp. 300–307.

    Google Scholar 

  5. Kuvshinov, G.G., in Proc. Third Int. Conf. on New Energy Systems and Conversions, Kazan, 1997, pp. 8–13.

    Google Scholar 

  6. Rodriguez, N.M., J. Mater. Res., 1993, vol. 8, pp. 3233–3250.

    Article  CAS  Google Scholar 

  7. Kuvshinov, G.G., Parmon, V.N., Sadykov, V.A., and Sobyanin, V.A., Stud. Surf. Sci. Catal., 1998, vol. 119, pp. 677–684.

    Article  Google Scholar 

  8. Kuvshinov, G.G., Chukanov, I.S., Krutsky, Y.L., Ochkov, V.V., Zaikovskii, V.I., and Kuvshinov, D.G., Carbon, 2009, vol. 47, pp. 215–225.

    Article  CAS  Google Scholar 

  9. Fenelonov, V.B., Avdeeva, L.B., Zheyvot, V.I., Okkel’, L.G., Goncharova, O.V., and Pimneva, L.G., Kinet. Catal., 1993, vol. 34, pp. 483–487.

    Google Scholar 

  10. Serp, P., Corrias, M., and Kalck, P., Appl. Catal. A: General, 2003, vol. 253, pp. 337–358.

    Article  CAS  Google Scholar 

  11. Rodriguez, N.M., J. Mater. Res., 1993, vol. 8, pp. 3233–3250.

    Article  CAS  Google Scholar 

  12. Shinkarev, V.V., Glushenkov, A.M., Kuvshinov, D.G., and Kuvshinov, G.G., Carbon, 2010, vol. 48, pp. 2004–2012.

    Article  CAS  Google Scholar 

  13. Asedegbega-Nieto, E., Bachiller-Baeza, B., Kuvshinov, D.G., García-García, F.R., Chukanov, E., Kuvshinov, G.G., Guerrero-Ruiz, A., and Rodríguez-Ramos, I., Carbon, 2008, vol. 46, pp. 1046–1052.

    Article  CAS  Google Scholar 

  14. Kovalenko, G.A., Kuznetsova, E.V., Mogilnykh, Yu.I., Andreeva, I.S., Kuvshinov, D.G., and Rudina, N.A., Carbon, 2001, vol. 39, pp. 1033–1043.

    Article  CAS  Google Scholar 

  15. Kovalenko, G.A., Perminova, L.V., Rudina, N.A., Mazov, I.N., Moseenkov, S.I., and Kuznetsov, V.L., J. Mol. Catal. B: Enzymatic, 2012, vol. 76, pp. 116–124.

    Article  CAS  Google Scholar 

  16. Hammel, E., Tang, X., Trampert, M., Schmitt, T., Mauthner, K., Eder, A., and Potschke, P., Carbon, 2004, vol. 42, pp. 1153–1158.

    Article  CAS  Google Scholar 

  17. Bannov, A.G., Uvarov, N.F., Shilovskaya, S.M., and Kuvshinov, G.G., Nanotechnol. Russ., 2012, vol. 7, pp. 169–177.

    Article  Google Scholar 

  18. Pham-Huu, C., Keller, N., Ehret, G., and Ledoux, M.J., J. Catal., 2001, vol. 200, pp. 400–410.

    Article  CAS  Google Scholar 

  19. Tomishko, M.M., Demicheva, O.V., Alekseev, A.M., Tomishko, A.G., Klinova, L.L., and Fetisova, O.E., Ross. Khim. Zh., 2008, vol. 5, pp. 39–43.

    Google Scholar 

  20. Patent RU 2064889, Publ. 1996.

  21. Reshetenko, T.V., Avdeeva, L.B., Ismagilov, Z.R., Chuvilin, A.L., and Ushakov, V.A., Appl. Catal. A: General, 2003, vol. 247, pp. 51–63.

    Article  CAS  Google Scholar 

  22. Wang, H.Y. and Lua, A.C., J. Phys. Chem. C, 2012, vol. 116, pp. 26765–26775.

    Article  CAS  Google Scholar 

  23. Molchanov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, pp. 435–493.

    Article  CAS  Google Scholar 

  24. Chesnokov, V.V. and Chichkan, A.S., Int. J. Hydrogen Energy, 2009, vol. 34, pp. 2979–2985.

    Article  CAS  Google Scholar 

  25. Kuvshinov, G.G., Mogilnykh, Yu.I., Kuvshinov, D.G., Ermakov, D.Yu., Ermakova, M.A., Salanov, N.A., and Rudina, N.A., Carbon, 1999, vol. 37, pp. 1239–1246.

    Article  CAS  Google Scholar 

  26. Shen, Y. and Lua, A.C., J. Power Sources, 2015, vol. 280, pp. 467–475.

    Article  CAS  Google Scholar 

  27. Kumar, A., Wolf, E.E., and Mukasyan, A.S., Am. Inst. Chem. Eng. J., 2011, vol. 57, pp. 2207–2213.

    Article  CAS  Google Scholar 

  28. Kingsley, J.J. and Patil, K.C., Mater. Lett., 1988, vol. 6, pp. 427–432.

    Article  CAS  Google Scholar 

  29. Pourgolmohammad, B., Masoudpanah, S.M., and Aboutalebi, M.R., Ceram. Int., 2017, vol. 43, pp. 8262–8268.

    Article  CAS  Google Scholar 

  30. Prakash, A.S., Khadar, A.M.A., Patil, K.C., and Hegde, M.S., J. Mater. Synth. Process., 2002, vol. 10, pp. 135–141.

    Article  CAS  Google Scholar 

  31. Mukasyan, A.S., Epstein, P., and Dinka, P., Proc. Combustion Inst., 2007, vol. 31, pp. 1789–1795.

    Article  CAS  Google Scholar 

  32. Dumitrescu, A.M., Samoila, P.M., Nica, V., Doroftei, F., Iordan, A.R., and Palamaru, M.N., Powder Technol., 2013, vol. 243, pp. 9–17.

    Article  CAS  Google Scholar 

  33. Kuvshinov, G.G., Mogilnykh, Y.I., Kuvshinov, D.G., Zaikovskii, V.I., and Avdeeva, L.B., Carbon, 1998, vol. 36, pp. 87–97.

    Article  CAS  Google Scholar 

  34. Alstrup, I., J. Catal., 1988, vol. 109, pp. 241–251.

    Article  CAS  Google Scholar 

  35. Narayanan, G.N., J. Mater. Sci. Mater. Electron., 2016, pp. 12209–12215.

    Google Scholar 

  36. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Chem. Rev., 2016, vol. 116, pp. 14493–14586.

    Article  CAS  PubMed  Google Scholar 

  37. González-Cortés, S.L. and Imbert, F.E., Appl. Catal. A: General, 2013, vol. 452, pp. 117–131.

    Article  CAS  Google Scholar 

  38. Wahab, R., Kim, Y.S., Lee, K., and Shin, H.S., J. Mater. Sci., 2010, vol. 11, pp. 2967–2973.

    Article  CAS  Google Scholar 

  39. Guillemin, S., Rapenne, L., Roussel, H., Sarigiannidou, E., Bremond, G., and Consonni, V., J. Phys. Chem., 2013, vol. 117, pp. 20738–20745.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kurmashov.

Additional information

Original Russian Text © P.B. Kurmashov, A.G. Bannov, M.V. Popov, A.A. Kazakova, A.V. Ukhina, G.G. Kuvshinov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 11, pp. 1649−1657.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmashov, P.B., Bannov, A.G., Popov, M.V. et al. Effect of Process Features and Parameters of Preparation of a Nickel Catalyst by Reduction of Nickel Nitrate with Hexamethylenetetramine on the Catalyst Performance in Synthesis of Nanofibrous Carbon. Russ J Appl Chem 91, 1874–1881 (2018). https://doi.org/10.1134/S1070427218110198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218110198

Keywords

Navigation