Skip to main content
Log in

Magnesium-Potassium Phosphate Matrix for Immobilization of 14C

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Possibility of using a low-temperature magnesium-potassium phosphate matrix to solve the problem of immobilizing the radioactive wastes containing radioactive carbon (14C) in the form of calcium carbonate was examined. The physicochemical characteristics of the compounds obtained were determined. Large values of the ultimate compression strength (22 ± 5 MPa), which satisfy the technical requirements for cemented radioactive wastes (no less than 4.9 MPa), were obtained. The minimum carryover of carbon dioxide into the atmosphere in the course of synthesis and in keeping of samples for 14 days was noted: not more than 3 wt % relative to the starting CaCO3. The leaching rate of carbonate ions from magnesium-potassium compounds by 28th day of contact with air does not exceed 10‒9 g cm‒2 day‒1, with this value for the rest of the compound components not exceeding 10‒4 g cm‒2 day‒1. Thus, it was found that the magnesium‒potassium phosphate matrix is an alternative to the cementation for solidification of radioactive wastes containing 14C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stefanovsky, S.V., Yudintsev, S.V., Vinokurov, S.E., and Myasoedov, B.F., Geochem. Int., 2016, vol. 54, no. 13, pp. 1136–1156.

    Article  CAS  Google Scholar 

  2. Kozlov, P.V. and Gorbunova, O.A., Tsementirovanie kak metod immobilizatsii radioaktivnykh otkhodov (Cementation as Method for Immobilization of Radioactive Waste), Ozersk: RITs VRB FGUP PO Mayak, 2011.

    Google Scholar 

  3. Sobolev, I.A., Ozhovan, M.I., Shcherbatova, T.D., and Batyukhnova, O.G., Stekla dlya radioaktivnykh otkhodov (Glasses for Radioactive Wastes), Moscow: Energoatomizdat, 1999.

    Google Scholar 

  4. NP (Regulations and Rules)-019-15. Federal regulations and rules in use of nuclear energy. Collection, processing, storage, and conditioning of liquid radioactive wastes. Safety requirements.

  5. Komar, A.G., Stroitel’nye materialy i izdeliya (Construction Materials and Articles), Moscow: Vysshaya shkola, 1988.

    Google Scholar 

  6. GOST (State Standard) 30515–2013, Cements. General Technical Conditions, Moscow: Standartinform, 2014.

  7. Merzhanov, A.G., Russ. Chem. Rev., 2003, vol. 72, no. 4, pp. 289–310.

    Article  CAS  Google Scholar 

  8. Kurkumeli, A.A., Molokhov, M.N., Sadkovskaya, O.D., et al., At. Energ., 1992, vol. 73, pp. 210–215.

    Article  CAS  Google Scholar 

  9. Wagh, A.S., Chemically Bonded Phosphate Ceramics. Twenty-First Century Materials with Diverse Applications, Elsevier, 2004.

    Google Scholar 

  10. Singh, D., Mandalika, V.R., Parulekar, S.J., and Wagh, A.S., J. Nucl. Mater., 2006. 348 (3), pp. 272–282.

    Article  CAS  Google Scholar 

  11. Vinokurov, S.E., Kulyako, Yu.M., Slyunchev, O.M., et al., Radiochemistry, 2009, vol. 51, no. 1, pp. 65–72.

    Article  CAS  Google Scholar 

  12. Vinokurov, S.E., Kulikova, S.A., Krupskaya, V.V., et al., J. Radioanal Nucl. Chem., 2018, vol. 315, no. 3, pp. 481–486.

    Article  CAS  Google Scholar 

  13. Sharygin, L.M., Fosfatnye tsementy v atomnoi energetike (Phoshate Cements in Nuclear Power Engineering), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2015.

    Google Scholar 

  14. Borzunov, A.I., D’yakov, S.V., and Poluektov, P.P., At. Energ., 2004, vol. 96, no. 2, pp. 133–137.

    Article  Google Scholar 

  15. Graeser, S., Postl, W., Bojar, H.-P., et al., Eur. J. Mineral., 2008, vol. 20 (4), pp. 629–633.

    Article  CAS  Google Scholar 

  16. RF Patent 2 381 580 (publ. 2010).

  17. Vinokurov, S.E., Kulyako, Yu.M., and Myasoedov, B.F., Ross. Khim. Zh., 2010, vol. 54, no. 3, pp. 81–88.

    CAS  Google Scholar 

  18. Vinokurov, S.E., Kulikova, S.A., Krupskaya, V.V., and Myasoedov, B.F., Radiochemistry, 2018, vol. 60, no. 1, pp. 70–78.

    Article  CAS  Google Scholar 

  19. FR.1.28.2014.18803, MI–171–13. Procedure for measuring the ultimate strength of cement compounds containing radioactive wastes on a Testing Sybertronic test machine.

  20. International Organization for Standardization, Draft International Standard, ISODIS–6961, 1979.

  21. FR.1.31.2007.03669, MVI–66–07. Procedure for measuring the mass concentration of carbonate ions in water and aqueous solutions by the potentiometric method with EKOM-CO3 ion-selective electrodes.

  22. Kulikova, S.A., Vinokurov, S.E., and Myasoedov, B.F., VANT, Ser. Materialoved. Nov. Mater., 2017, no. 2 (89), pp. 32–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dmitrieva.

Additional information

Original Russian Text © A.V. Dmitrieva, M.Yu. Kalenova, S.A. Kulikova, I.V. Kuznetsov, A.M. Koshcheev, S.E. Vinokurov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 4, pp. 572−577.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, A.V., Kalenova, M.Y., Kulikova, S.A. et al. Magnesium-Potassium Phosphate Matrix for Immobilization of 14C. Russ J Appl Chem 91, 641–646 (2018). https://doi.org/10.1134/S107042721804016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721804016X

Navigation