Skip to main content
Log in

Radiation and Chemical Stability of a Magnesium-Phosphate Matrix for 14C Immobilization

  • Published:
Radiochemistry Aims and scope

Abstract

The results of manufacturing, studying the radiation and hydrolytic stability of a magnesium-potassium phosphate (MPP) matrix, are presented, which is being developed for the purpose of immobilizing 14C, a product of processing mixed uranium-plutonium nitride fuel. Samples of MPP matrix containing 20 and 40 wt % calcium carbonate as a waste form fixing 14C were irradiated with accelerated electrons with energies up to 2.5 MeV to doses of 106, 107 and 108 Gy. It was found that the destruction of the target phases begins at a dose of 107 Gy up to their complete decomposition after the accumulation of a dose of 108 Gy. A significant increase in the leaching rates for all studied cations from radiation-damaged samples after a dose accumulation of 108 Gy has not been established; the duration of the geological storage of the matrix until complete decomposition of the main 14C fixing phases has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shadrin, A.Yu., Dvoeglazov, K.N., Maslennikov, A.G., Kashcheev, V.A., Tret’yakova, S.G., Shmidt, O.V., Vidanov, V.L., Ustinov, O.A., Volk, V.I., Veselov, S.N., and Ishunin, V.S., Radiochemistry, 2016, vol. 58, no. 3, p. 271. https://doi.org/10.1134/S1066362216030085

    Article  CAS  Google Scholar 

  2. Federal’nyi zakon no. 190 FZ Ob obrashchenii s radioaktivnymi otkhodami i o vnesenii izmenenii v otdel’nye zakonodatel’nye akty Rossiiskoi Federatsii, Ros. gazeta. Federal’nyi vypusk no. 5529 ot 15 iyulya 2011 g (Federal Law no. 190 FZ “On the Management of Radioactive Waste and on Amending Certain Legislative Acts of the Russian Federation”, Ros. Gazeta. Federal Issue no. 5529 dated July 15, 2011).

  3. Yakunin, S.A., Ustinov, O.A., Shadrin, A.Yu., and Shudegova, O.V., At. Energy, 2016, vol. 120, no. 3, p. 229. https://doi.org/10.1007/s10512-016-0122-y

    Article  CAS  Google Scholar 

  4. Vinokurov, S.E., Kulikova, S.A., Krupskaya, V.V., Myasoedov, B.F., Radiochemistry, 2018, vol. 60, no. 1, p. 70. https://doi.org/10.1134/S1066362218010125

    Article  CAS  Google Scholar 

  5. Vinokurov, S.E., Kulikova, S.A., and Myasoedov, B.F., Materials, 2018, vol. 11, p. 976. https://doi.org/10.3390/ma11060976

    Article  Google Scholar 

  6. Vinokurov, S.E., Kulikova, S.A., Krupskaya, V.V., Danilov, S.S., Gromyak, I.N., and Myasoedov, B.F., J. Radioanal. Nucl. Chem., 2018, vol. 315, no. 3, p. 481. https://doi.org/10.1007/s10967-018-5698-3

    Article  CAS  Google Scholar 

  7. Wagh, A.S., Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications, Amsterdam: Elsevier, 2016.

    Google Scholar 

  8. Graeser, S., Postl, W., and Bojar, H.-P., Eur. J. Mineral., 2008, vol. 20, no. 4, p. 629. https://doi.org/10.1127/0935-1221/2008/0020-1810

    Article  CAS  Google Scholar 

  9. Dmitrieva, A.V., Kalenova, M.Yu., Kulikova, S.A., Kuznetsov, I.V., Koshcheev, A.M., and Vinokurov, S.E., Russ. J. Appl. Chem., 2018, vol. 91, no. 4, p. 641. https://doi.org/10.1134/S107042721804016X

    Article  CAS  Google Scholar 

  10. Powder Diffraction File. International Center for Diffraction Data, Swarthmore, Pennsylvania (USA), 1999.

  11. GOST 52126-2003: Otkhody radioaktivnye. Opredelenie khimicheskoi ustoichivosti otverzhdennykh vysokoaktivnykh otkhodov metodom dlitel’nogo vyshchelachivaniya: Natsional’nyi standart Rossiiskoi Federatsii (Radioactive Waste. Determination of the Chemical Resistance of Solidified High-Level Waste by Continuous Leaching: National Standard of the Russian Federation), Moscow: Izd. Standartov, 2003.

  12. Bulatov, A.V. and Zeimal’, A.E., Metodicheskie ukazaniya k praktikumu “Khimicheskie metody analiza”: Ucheb. posobie (Guidelines for the Workshop “Chemical Methods of Analysis”: Textbook. Allowance), St. Petersburg: VVM, 2010

    Google Scholar 

  13. Kreshkov, A.P., Osnovy analiticheskoi khimii, vol. 2: Teoreticheskie osnovy. Kolichestvennyi analiz (Fundamentals of Analytical Chemistry. Vol. 2: Theoretical Foundations. Quantitative Analysis), Moscow: Khimiya, 1971.

    Google Scholar 

  14. NP-019-15: Federal’nye normy i pravila v oblasti ispol’zovaniya atomnoi energii “Sbor, pererabotka, khranenie i konditsionirovanie zhidkikh radioaktivnykh otkhodov. Trebovaniya bezopasnosti” (NP-019-15: Federal norms and rules in the field of atomic energy use “Collection, processing, storage and conditioning of liquid radioactive waste. Safety requirements”).

  15. GOST R 51883-2002: Otkhody radioaktivnye tsementirovannye. Obshchie tekhnicheskie trebovaniya (State Standard GOST R 51883-2002: Cemented radioactive waste. General technical requirements), Moscow: Izd-vo standartov, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Lizin, A. Yu. Shadrin, M. Yu. Kalenova or S. E. Vinokurov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Russian Text © The Author(s), 2020, published in Radiochemistry, 2020, Vol. 62, No. 1, pp. 79–86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizin, A.A., Yandaev, D.M., Shadrin, A.Y. et al. Radiation and Chemical Stability of a Magnesium-Phosphate Matrix for 14C Immobilization. Radiochemistry 62, 131–137 (2020). https://doi.org/10.1134/S1066362220010178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220010178

Keywords

Navigation