Skip to main content
Log in

Structure and Thermal Stability of Nanostructured Precursor Powders of Copper(I) Sulfide and Selenide

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The hydrochemical precipitation method at 298 and 333 K with, respectively, thiocarbamide and sodium selenosulfate was used to obtain nanostructured powders of copper sulfide with formula composition Cu2S, which are composed of globules 200–500 nm in diameter, formed by 70–100-nm particles, and copper(I) selenide, composed of crystallites with polyhedral shape, sizes of 80 to 500 nm, and a formula composition Cu1.84Se. An X-ray diffraction analysis revealed the orthorhombic Cu2S structure (space group no. 39-Abm2) with unit cell parameters a = 1.182 nm, b = 2.705 nm, and c = 1.343 nm. Powders of Cu1.84Se copper selenide have a cubic structure (space group Fm3m) with lattice constant a = 0.5693 nm. A thermal analysis demonstrated that the chemically precipitated Cu2S and Cu1.84Se powders have a stable elemental composition up to 200–240°C. An intense oxidation of the samples begins at a temperature exceeding 250°C and is accompanied by a sharp decrease in their content of sulfur (selenium) and by an increase in the content of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok: modelirovanie, eksperiment (Electrochemical Deposition of Films: Simulation, Experiment), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2006.

    Google Scholar 

  2. Sateesh, P. and Madhusudhanarao, P., Int. J. Adv. Res. Phys. Sci., 2015, vol. 2, no. 11, pp. 11–16.

    Google Scholar 

  3. Kumar, S.A, Swati, M., and Sheel, T.G., Austin Chem. Eng., 2014, vol. 1, no. 1, pp. 01–05.

    Google Scholar 

  4. Suresh, S., Raveendra Reddy, C., Suresh Babu, G., and Veera Reddy, T., Int. J. Sci. Develop. Res., 2016, vol. 1, no. 9, pp. 244–249.

    Google Scholar 

  5. Cho, A., Ahn, S., Yun, J.H., et al., Thin Solid Films, 2013, vol. 546, pp. 299.

    Article  CAS  Google Scholar 

  6. Filippo, E., Manno, D., and Serra, A., J. Alloys Compd,, 2012, vol. 538, p. 8.

    Article  CAS  Google Scholar 

  7. More, P., Dhanayat, S., Gattu, K., et al., AIP Conf. Proc., 2016, vol. 1728, no. 1, p. 020489.

    Article  Google Scholar 

  8. Lige Liu, Bin Zhou, Luogen Dengand, et al., J. Phys. Chem. C, 2014, vol. 118, no. 46, pp. 26964–26972.

    Article  Google Scholar 

  9. García, V.M., Guerrero, L., Nair, M.T.S., and Nair, P.K., Superficies Vacío, 1999, no. 9, pp. 213–218.

    Google Scholar 

  10. Santos Cruz, J., Mayén Hernández, S.A., Coronel Hernández, J.J., et al., Chalcogenide Lett., 2012, vol. 9, no. 2, pp. 85–91.

    CAS  Google Scholar 

  11. Muradov, M.B., Eivazova, G.M., and Elchiev, Ya.M., Prikl. Fiz., 2005, no. 5, pp. 94–97.

    Google Scholar 

  12. Chattraki, A.N., Kamble, S.S., and Deshmukh, L.P., Mater. Lett., 2012, no. 67, pp. 39–41.

    Article  Google Scholar 

  13. Obaid, A.S., Mahdi, M.A., Hassan, Z., and Bououdina, M., Superlattices Microstruct., 2012, no. 52, pp. 816–823.

    Article  CAS  Google Scholar 

  14. Klochko, N.P., Khrypunov, G.S., Kopach, V.R., et al., Semiconductors, 2014, vol. 48, no. 4, pp. 521–530.

    Article  CAS  Google Scholar 

  15. Kvaratskheliya, R.K., Elektrokhimiya gidroksilamina (Electrochemistry of Hydroxylamine), Tbilisi: Metsniereba, 1981.

    Google Scholar 

  16. Quantitative Data File for Ore Minerals, Criddle, A.J. and Stanley, C.J., Eds., London: Chapman & Hall, 1993, 3rd ed., p.157.

  17. Andreev, O.V., Sikerina, N.V., and Solov’eva, A.V., Russ. J. Inorg. Chem., 2005, vol. 50, no. 10, p. 1586.

    Google Scholar 

  18. Balapanov, M.Kh., Ishembetov, R.Kh., Kuterbekov, K.A., et al., Pis’ma Mater., 2016, vol. 6, no. 4(24), pp. 360–365.

    Google Scholar 

  19. Khomane, A.S., Arch. Appl. Sci. Res., 2012, vol. 4, p. 1857.

    CAS  Google Scholar 

  20. Papadimitropoulos, G., Vourdas, N., Vamvakas, V., and Da vazoglou, D., J. Phys.: Conf. Ser., 2005, vol. 10, pp. 182–185.

    CAS  Google Scholar 

  21. Maskaeva, L.N., Glukhova, I.A., Markov, V.F., et al., Butlerov. Soobshch., 2016, vol. 45, no. 3, pp. 24–35.

    Google Scholar 

  22. Maskaeva, L.N., Glukhova, I.A., Markov, V.F., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 1939–1947.

    Article  CAS  Google Scholar 

  23. Grigor’yan, E.G., Khim. Zh. Armenii, 2009, vol. 62, nos. 1–2, pp. 23–29.

    Google Scholar 

  24. Lidin, R.A., Molochko, V.A., and Andreeva, L.L., Neorganicheskaya khimiya v reaktsiyakh. Spravochnik (Inorganic Chemistry in Reactions: Reference Book), Moscow: Drofa, 2007, 2nd ed. rev. and suppl.

    Google Scholar 

  25. Giaccherini, A., Cinotti, S., Capolupo, F., et al., Period. Mineral., ECMS, 2015, pp. 79–80.

    Google Scholar 

  26. Selivanov, E.N., Gulyaeva, R.I., and Vershinin, A.D., Neorg. Mater., 2007, vol. 43, no. 6, pp. 653–658.

    Article  Google Scholar 

  27. Machado, K.D., de Lima, J.C., Grandi, T.A., et al., Acta Crystallogr., Sect. B: Struct. Sci., 2004, vol. 60, p. 282.

    Article  CAS  Google Scholar 

  28. Korshunov, A.V. and Il’in, A.P., Izv. Tomsk. Politekhn. Univ., 2008, vol. 313, no. 3, pp. 5.

    Google Scholar 

  29. Ponyatovski, E.G., Abrosimova, G.E., Aronin, A.S., et al., Phys. Solid. State, 2002, vol. 44, no. 5, p. 852.

    Article  Google Scholar 

  30. Taskinen, P., Patana, S., Kobylin, P., and Latostenmaa, P., High Temp. Mater. Processes, 2014, vol. 33, p. 469.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maskaeva.

Additional information

Original Russian Text © L.N. Maskaeva, V.F. Markov, E.A. Fedorova, I.A. Berg, R.F. Samigullina, V.I. Voronin, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 10, pp. 1287−1294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskaeva, L.N., Markov, V.F., Fedorova, E.A. et al. Structure and Thermal Stability of Nanostructured Precursor Powders of Copper(I) Sulfide and Selenide. Russ J Appl Chem 90, 1572–1578 (2017). https://doi.org/10.1134/S1070427217100032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217100032

Navigation