Skip to main content
Log in

Characteristics of copper sulfide nanoparticles obtained in the copper sulfate–sodium thiosulfate system

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Stable hydrosols of copper sulfide nanoparticles are synthesized by heating aqueous solutions with different ratios of sodium thiosulfate and copper sulfate in the presence of polyvinylpyrrolidone and studied by a number of physicochemical methods in situ (optical spectroscopy, dynamic light scattering) and ex situ (transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy). The main product is CuS covellite nanoparticles with some impurities of other phases (Cu2S, Cu1,8S, Cu7S4). With an increase in the initial molar ratio S2O 2−3 / Cu from 0.2 to 5 the nanoparticle size increases from 1-5 nm to 30-50 nm and then decreases to 4 nm at a ratio of 10. A substantial increase in the intensity of plasmon absorption within 800-1500 nm is observed during the formation of planar nanoparticles with a lateral size of about 30 nm at S2O 2−3:Cu = 5. A band gap obtained from both direct and indirect optical absorption spectra of sulfides (2.6 eV and 1.7 eV respectively) remains constant for all particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Shipway, E. Katz, and I. Willner, Chem. Phys. Chem., 1, 18–52 (2000).

    Article  CAS  Google Scholar 

  2. R. A. D. Pattrick, J. F. W. Mosselmans, J. M. Charnock, et al., Geochim. Cosmochim. Acta, 61, 2023–2036 (1997).

    Article  CAS  Google Scholar 

  3. M. Wang, F. Xie, W. Li, et al., J. Mater. Chem. A, 1, 8616–8621 (2013).

    Article  CAS  Google Scholar 

  4. G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, ACS Nano, 6, No. 8, 7489–7496 (2012).

    Article  CAS  Google Scholar 

  5. Y. Xie, L. Carbone, C. Nobile, et al., ACS Nano, 7, 7352–7369 (2013).

    Article  CAS  Google Scholar 

  6. Y. Xie, A. Riedinger, M. Prato, et al., J. Am. Chem. Soc., 135, No. 46, 17630–17637 (2013).

    Article  CAS  Google Scholar 

  7. D. Jaque, L. M. Maestro, B. Del Rosal, et al., Nanoscale, 6, 9494–9530 (2014).

    Article  CAS  Google Scholar 

  8. M. Wang, F. Xie, W. Li, M. Chena, and Y. Zhao, J. Mater. Chem. A, 1, 8616–8621 (2013).

    Article  CAS  Google Scholar 

  9. J. Li, T. Jiu, G.-H. Tao, et al., J. Colloid Interface Sci., 419, 142–147 (2014).

    Article  CAS  Google Scholar 

  10. M. B. Muradov, G. M. Eivazova, and Ya. M. Elichiev, Prikl. Fiz., No. 5, 94–97 (2010).

    Google Scholar 

  11. L. Reijnen, B. Meester, F. D. Lange, et al., Chem. Mater., 17, 2724–2728 (2005).

    Article  CAS  Google Scholar 

  12. G. Mao, W. Dong, G. Kurth Dirk, and H. Mohwald, Nano Lett., 4, 249–252 (2004).

    Article  CAS  Google Scholar 

  13. G. Shen, D. Chen, K. Tang, et al., J. Solid State Chem., 173, 232–235 (2003).

    Article  CAS  Google Scholar 

  14. F. M. Cheng, Z. Y. Qi, F. Q. Xiao, et al., Colloids Surf. A, 371, 14–21 (2010).

    Article  Google Scholar 

  15. J. R. Botelho, A. G. Souza, A. D. Gondim, et al., J. Therm. Anal. Calorim., 79, 309–312 (2004).

    Article  Google Scholar 

  16. J. C. Jr. D'Ars de Figueiredo, V. M. De Bellis, M. I. Yoshida, et al., J. Therm. Anal. Calorim., 79, 313–317 (2005).

    Article  Google Scholar 

  17. S. P. Chen, X. X. Mung, O. Shuai, et al., J. Therm. Anal. Calorim., 86, 767–774 (2006).

    Article  CAS  Google Scholar 

  18. Y. Ni, H. Liu, F. Wang, et al., Appl. Phys. A, 79, 2007–2011 (2004).

    Article  CAS  Google Scholar 

  19. M. Nafees, S. Ali, K. Rasheed, and S. Idrees, Appl. Nanosci., 2, 157–162 (2012).

    Article  CAS  Google Scholar 

  20. M. Nafees, S. Ali, S. Idrees, K. Rashid, and M. A. Shafique, Appl. Nanosci., 3, 119–124 (2013).

    Article  CAS  Google Scholar 

  21. C. M. Simonescu, V. S. Teodorescu, O. Carp, et al., J. Therm. Anal. Calorim., 88, 71–76 (2007).

    Article  CAS  Google Scholar 

  22. V. N. Podchainova and L. N. Simonova, Copper [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  23. Chemist’s Guidebook [in Russian], B. P. Nikol'skii (ed.), Khimiya, Moscow–Leningrad (1964).

  24. K. Itoh, T. Kuzuya, and K. Sumiyama, Mat. Trans., 47, No. 8, 1953–1956 (2006).

    Article  CAS  Google Scholar 

  25. V. Klimov, P. Haring Bolivar, H. Kurz, et al., Appl. Phys. Lett., 67, No. 5, 653–655 (1995).

    Article  CAS  Google Scholar 

  26. S. S. Dhasade, J. S. Patil, J. V. Thombare, and V. J. Fulari, J. Shivaji Univ., 41, No. 2, 1–3 (2014-2015).

    Google Scholar 

  27. P. S. Khiew, S. Radiman, N. M. Huang, and Md. S. Ahamd, J. Cryst. Growh., 268, 227–237 (2004).

    Article  CAS  Google Scholar 

  28. P. K. Bajpai, S. Yadav, A. Tiwari, and H. S. Virk, Solid State Phenom., 222, 187–233 (2015).

    Article  Google Scholar 

  29. P. V. Quintana-Ramirez, Ma. C. Arenas-Arrocena, J. Santos-Cruz, et al., Beilstein J. Nanotechol., 5, 1542–1552 (2014).

    Article  Google Scholar 

  30. A. M. Vasilevskii, G. A. Konoplev, and M. F. Panov, Optical Physical Research Methods: Methodical Instructions to Laboratory Works [in Russian], Izd. SPbGETU LETI, St. Petersburg (2011).

    Google Scholar 

  31. A. Sandstrom, A. Shchkarev, and J. Paul, Miner. Eng., 18, 505–515 (2005).

    Article  Google Scholar 

  32. Y. Mikhlin, S. Vorobyev, S. Saikova, Y. Tomashevich, O. Fetisova, S. Kozlova, and S. Zharkov, New J. Chem., 40, No. 4, 3059–3065 (2016).

    Article  CAS  Google Scholar 

  33. S. Saikova, S. Vorobyev, M. Likhatski, A. Romanchenko, S. Erenburg, S. Trubina, and Y. Mikhlin, App. Surface Sci., 258, No. 20, 8214–8221 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Saikova.

Additional information

Original Russian Text © 2017 K. S. Murasheva, S. V. Saikova, S. A. Vorobiev, A. S. Romanchenko, Yu. L. Mikhlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murasheva, K.S., Saikova, S.V., Vorobiev, S.A. et al. Characteristics of copper sulfide nanoparticles obtained in the copper sulfate–sodium thiosulfate system. J Struct Chem 58, 1383–1390 (2017). https://doi.org/10.1134/S0022476617070150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617070150

Keywords

Navigation