Skip to main content
Log in

Photocatalytic and photoelectrocatalytic degradation of metoprolol tartrate in aqueous media by recyclable Co doping Fe3O4/TiO2 magnetic core–shell nanocomposites

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Magnetically recoverable cobalt doping Fe3O4/TiO2 magnetic nanocomposites with an acceptable core–shell structure were prepared via a sol-gel process at low calcination temperature. The crystalline size and structure, morphology, and magnetic properties of resulting particles have been characterized by X-ray diffraction (XRD), fourier transform infrared (FT-IR), FT-Raman, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). Metoprolol tartrate (MET) as a pharmaceutical pollutant was used to observe the photocatalytic degradation ability of the magnetically recoverable particles. The process of degradation under UV irradiation at controlled temperature was studied and the remaining concentrations of MET as a contaminant were measured by UV-Vis spectrometer at λ = 229 nm. This ability remained 95.76% after three times of repetitive use at the same conditions. Various parameters such as reaction temperature, pH, and speed of stirring of the aqueous solution had an effect on the rate of degradation. The amount of cobalt dopant and nanocomposites are also effective on the rate of degradation. Coupling of electrical current with photocatalytic process has proven to be effective in the degradation of MET aqueous solution clearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romero, V., Marco, P., Giménez, J., and Esplugas, S., Int. J. Photoenergy, 2013, vol. 2013, pp. 1–10.

    Article  Google Scholar 

  2. Farzadkia, M., Bazrafshan, E., Esrafili, A., Yang, J.K., and Siboni, M.S., Iran J. Environ. Health Sci. Eng., 2015, vol. 13, pp. 35–42.

    Article  Google Scholar 

  3. Abramovic, B., Kler, S., Šojic, D., Lauševic, M., Radovic, T., and Vione, D., J. Hazard. Mater., 2011, vol. 198, pp. 123–132.

    Article  CAS  Google Scholar 

  4. Yang, H., An, T., Li, G., Song, W., Cooper, W.J., Luo, H., and Guo, X., J. Hazard. Mater., 2010, vol. 179, no. 1–3, pp. 834–839.

    Article  CAS  Google Scholar 

  5. Sirés, I. and Brillas, E., Environ. Int., 2012, vol. 40, pp. 212–229.

    Article  Google Scholar 

  6. Arriaga, F.M., Esplugas, S., and Giménez, J., Water Research, 2008, vol. 42, no. 3, pp. 585–594.

    Article  Google Scholar 

  7. Díaz, J.D.M., Joya, G., Utrilla, J.R., Ramos, R.L., Polo, M.S., García, M.A.F., and Castillo, N.A.M., J. Colloid Interface Sci., 2010, vol. 345, no. 2, pp. 481–490.

    Article  Google Scholar 

  8. Choina, J., Kosslick, H., Fischer, C., Flechsig, G.U., Frunza, L., and Schulz, A., Appl. Catal. B, 2013, vol. 129, pp. 589–598.

    Article  CAS  Google Scholar 

  9. Li, C., Younesi, R., Cai, Y., Zhu, Y., Ma, M., and Zhu, J., Appl. Catal. B, 2014, vol. 156–157, pp. 314–322.

    Article  Google Scholar 

  10. Hu, S., Li, F., Fan, Z., and Chang, C.C., Appl. Surf. Sci., 2011, vol. 258, no. 1, pp. 182–188.

    Article  CAS  Google Scholar 

  11. Qourzal, S., Assabbane, A., and Ichou, Ya., J. Photochem. Photobiol. A, 2004, vol. 163, no. 3, pp. 317–321.

    Article  CAS  Google Scholar 

  12. Li, B., Wang, X., Yan, M., and Li, L., Mater. Chem. Phys., 2003, vol. 78, no. 1, pp. 184–188.

    Article  Google Scholar 

  13. Akpan, U.G., and Hameed, B.H., J. Hazard. Mater., 2009, vol. 170, no. 2–3, pp. 520–529.

    Article  CAS  Google Scholar 

  14. Zhang, D., High Energ. Chem., 2012, vol. 46, no. 3, pp. 206–211.

    Article  CAS  Google Scholar 

  15. Bahadur, N., Jain, K., Srivastava, A.K., Gakhar, G.R., Haranath, D., and Dulat, M.S., Mater. Chem. Phys., 2010, vol. 124, no. 1, pp. 600–608.

    Article  CAS  Google Scholar 

  16. Kontos, A.I., Likodimos, V., Stergiopoulos, T., Tsoukleris, D.S., and Falaras, P., Chem. Mater., 2009, vol. 21, no. 4, pp. 662–672.

    Article  CAS  Google Scholar 

  17. Khanna, P.K., Singh, N., and Charan, S., Mater. Lett., 2007, vol. 61, no. 25, pp. 4725–4730.

    Article  CAS  Google Scholar 

  18. Wang, C., Böttcher, C., Bahnemann, D.W., and Dohrmann, J.K., J. Mater. Chem., 2003, vol. 13, no. 9, pp. 2322–2329.

    Article  CAS  Google Scholar 

  19. Karthik, K., Pandian, S.K., and Jaya, N.V., Appl. Surf. Sci., 2010, vol. 256, no. 22, pp. 6829–6833.

    Article  CAS  Google Scholar 

  20. Hamadanian, M., Vanani, A.R., and Majedi, A., J. Iran Chem. Soc., 2010, vol. 7, pp. S52–S58.

    Article  CAS  Google Scholar 

  21. Minh, N.V., Hien, N.T.M., Vien, V., Kim, S.J., Noh, W.S., Yang, I., Dung, D.T., Khang, N.C., and Khoi, N.T., J. Korean Phys. Soc., 2008, vol. 52, no. 5, pp. 1629–1632.

    Article  CAS  Google Scholar 

  22. Santara, B., Pal, B., and Giri, P.K., J Appl. Phys., doi: http://dx.doi.org/10.1063/1.3665883

  23. Mugundan, S., Rajamannan, B., Viruthagiri, G., Shanmugam, N., Gobi, R., and Praveen, P., Appl. Nanosci., 2015, vol. 5, no. 4, pp. 449–456.

    Article  CAS  Google Scholar 

  24. Zhu, H., Yang, B., Xu, J., Fu, Z., Wen, M., Guo, T., Fu, S., Zuo, J., and Zhang, S., Appl. Catal. B, 2009, vol. 90, no. 3–4, pp. 463–469.

    Article  CAS  Google Scholar 

  25. Yang, L., Luo, S., Li, Y., Xiao, Y., Kang, Q., and Cai, Q., Environ. Sci. Technol., 2010, vol. 44, no. 19, pp. 7641–7646.

    Article  CAS  Google Scholar 

  26. Xin, T., Ma, M., Zhang, H., Gu, J., Wang, S., Liu, M., and Zhang, Q., Appl. Surf. Sci., 2014, vol. 288, pp. 51–59.

    Article  CAS  Google Scholar 

  27. Pang, S.C., Kho, S.Y., and Chin, S.F., J. Nanomater., doi:10.1155/2012/427310

  28. Kim, H.S., Kim, D., Kwak, B.S., Han, G.B., Um, M.H., and Kang, M., Chem. Eng. J., 2014, vol. 243, pp. 272–279.

    Article  CAS  Google Scholar 

  29. Šcepanovic, M., Abramovic, B., Golubovic, A., Kler, S., Brojcin, M.G., Mitrovic, Z.D., Babic, B., Matovic, B., and Popovic, Z.V., J. Sol-Gel Sci. Technol., 2012, vol. 61, no. 2, pp. 390–402.

    Article  Google Scholar 

  30. Rengaraj, S., Venkataraj, S., Yeon, J.W., Kim, Y., Li, X.Z., and Pang, G.K.H., Appl. Catal. B., 2007, vol. 77, no. 1–2, pp. 157–165.

    Article  CAS  Google Scholar 

  31. Niu, H., Wang, Q., Liang, H., Chen, M., Mao, C., Song, J., Zhang, S., Gao, Y., and Chen, C., Materials, 2014, vol. 7, no. 5, pp. 4034–4044.

    Article  CAS  Google Scholar 

  32. Wei, J., Leng, C.J., Zhang, X., Li, W., Liu, Z.Y., and Shi, J., J. Phys. Conf. Ser., doi 10.1088/1742-6596/149/1/012083

  33. Behrad, F., Farimani, M.H.R., Shahtahmasebi, N., Roknabadi, M.R., and Karimipour, M., EPJ Plus, 2015, vol. 130, pp. 144–152.

    Google Scholar 

  34. Li, Y., Qiu, W., Qin, F., Fang, H., Hadjiev, V.G., Litvinov, D., and Bao, J., J. Phys. Chem. C., 2016, vol. 120, no. 8, pp. 4511–4516.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saber-Tehrani.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teimouri, M., Waqif-Husain, S., Saber-Tehrani, M. et al. Photocatalytic and photoelectrocatalytic degradation of metoprolol tartrate in aqueous media by recyclable Co doping Fe3O4/TiO2 magnetic core–shell nanocomposites. Russ J Appl Chem 90, 1309–1314 (2017). https://doi.org/10.1134/S1070427217080195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217080195

Navigation