Skip to main content
Log in

Prediction of thermal explosion parameters for energetic materials on the basis of thermal analysis data

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Results obtained in calculations of thermal ignition delay periods in a wide temperature range are in good agreement with published data for octogene samples in the form of a sphere 12.7 mm in diameter and cylindrical NEPE propellant samples with diameters of 20 to 80 mm. The kinetic parameters of the thermal decomposition of materials, used in the calculations, were obtained by the DSC method with the use of hermetically sealed crucibles and crucibles with perforated covers under a nitrogen pressure of 10 MPa at heating rates of 0.1 to 1.0 deg min–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burnham, A.K., Weese, R.K., Wardell, J.F., et al., 13th Int. Detonation Symp., Norfolk, VA, United States, July 23–28, 2006. UCRL–CONF–222234.

  2. Qin Pei-wen, Zhao Xiao-bin, Qin Chao, et al., Chin. J. Explos. Propellants, 2016, vol. 39, no. 1, pp. 84–88.

    Google Scholar 

  3. Popok, V.N. and Il’inykh, K.F., Butlerov Soobshch., 2013, vol. 33, no. 3, pp. 42–48.

    Google Scholar 

  4. Milekhin, Yu.M., Koptelov, A.A., Baranets, Yu.N., and Rogosina, A.A., Russ. J. Appl. Chem., 2015, vol. 88, no. 7, pp. 1134–1141.

    Article  CAS  Google Scholar 

  5. Burnham, A.K., Weese, R.K., Wemhoff, A.P., and Maienschein, J.L., J. Thermal Anal. Calorim., 2007, vol. 89, no. 2, pp. 407–415.

    Article  CAS  Google Scholar 

  6. Koptelov, A.A., Milekhin, Yu.M., Sadovnichii, D.N., and Shishov, N.I., High Temp., 2008, vol. 46, no. 2, pp. 261–274.

    Article  CAS  Google Scholar 

  7. US Patent H1341 (publ. 1994).

  8. Milekhin, Yu.M., Koptelov, A.A., Sadovnichii, D.N., et al., Combust., Explos. Shock Waves, 2006, vol. 42, no. 2, pp. 242–246.

    Article  Google Scholar 

  9. Hsu, P.C., Hust, G., Zhang, M.X., et al., The APS Shock Compression of Condensed Matter, Seattle, WA, United States, July 7–12, 2013, LLNL–CONF–642893.

  10. Vyazovkin, S., Burnham, A.K., Criado, J.M., et al., Thermochim. Acta, 2011, vol. 520, pp. 1–19.

    Article  CAS  Google Scholar 

  11. Wemhoff, A.P. and Burnham, A.K., Comparison of the ALE3D and AKTS Thermal Safety Computer Codes for Calculating Times to Explosion in ODTX and STEX Thermal Cookoff Experiments, 2006, UCRL–TR–220687.

    Book  Google Scholar 

  12. Shamsa, F., Iran. J. Pharmaceutical Sci., 2005, vol. 1, no. 4, pp. 203–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Koptelov.

Additional information

Original Russian Text © A.A. Koptelov, Yu.M. Milekhin, A.A. Matveev, I.A. Koptelov, A.A. Rogozina, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 8, pp. 1033−1040.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koptelov, A.A., Milekhin, Y.M., Matveev, A.A. et al. Prediction of thermal explosion parameters for energetic materials on the basis of thermal analysis data. Russ J Appl Chem 90, 1265–1272 (2017). https://doi.org/10.1134/S1070427217080122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217080122

Navigation