Skip to main content
Log in

Ignition of a Pyrolysis Wooden Particle Based on the Thermal Explosion Theory

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This work is devoted to analyzing the behavior of dry wooden bodies during pyrolysis and ignition. A new treatment for defining criticality of this problem has been applied here. Critical conditions in different planes, using the definitions of criticality, are presented. The effects of different mechanisms and parameters such as the heat transfer to the wooden body, volatile gases, the initial temperature of the body, and the heat of pyrolysis on ignition characteristics have been obtained. The temperature and mass loss histories of the wooden body are presented based on a numerical solution to the heat and mass balance equations. The numerical solution shows good agreement with that predicted from the analytical one. The relation between the ignition temperature, ignition time, and the controllable parameters which effect on the critical ignition conditions are generated and discussed. Satisfactory generic qualitative results have been achieved in the absence of either physical or chemical kinetic data for the reactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A 0 :

Pre-exponential factor (s−1)

A p :

Particle surface area (m2)

\(B = R\dot{Q}\backslash E\rho_{0} V_{\text{p}}{{C_{\text{p}} }} A_{0}\) :

Dimensionless heat transferred rate

C D, W :

Specific heat of dry wood (J kg−1 K−1)

C p :

Specific heat of wood (J kg−1 K−1)

C v :

Specific heat of volatile matter (J kg−1 K−1)

E :

Activation energy (J mol−1)

h :

Heat transfer coefficient (W m−2K−1)

k :

Thermal conductivity (W m−1 K−1)

q :

Exothermic pyrolysis heat of reaction (J/kg)

\(\dot{Q}\) :

Heat transferred rate to the particle (W)

R :

Universal gas constant (J mol−1 K)

t :

Time (s)

T :

Temperature (K)

V :

Volume (m3)

\(\alpha = qV_{\text{p}} \rho_{0} A_{0} /\dot{Q}\) :

Dimensionless pyrolysis heat

\(\gamma = R\dot{Q}/A_{0} C_{\text{v}} EV_{\text{p}} \rho_{0}\) :

Dimensionless volatile matter heat

ρ :

Instantaneous particle density (kg m−3)

ρ r = ρ/ρ f :

Density ratio

θ = RT/E :

Dimensionless temperature

\(\tau = R\dot{Q}t/EC_{\text{p}} \rho_{0} V_{\text{p}}\) :

Dimensionless time

*:

Critical

comb:

Combined

conv:

Convection

f:

Final

ig:

Ignition

m:

Maximum

0:

Initial condition

p:

Particle

rad:

Radiation

References

  • Aarsen F, Beenackers C, Swaaij V (1985) Wood pyrolysis and carbon dioxide char gasification kinetics in a fluidized bed. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier Applied Science Publishers, London, pp 691–715

    Chapter  Google Scholar 

  • Adler J, Enig JW (1964) The critical conditions in thermal explosion theory with reactant consumption. Combust Flame J 8:97–102

    Article  Google Scholar 

  • Babrauskas V (2001) Ignition of wood: a review state of the art. In: Interflam 2001. Interscience Communications Ltd., London, pp 71–88

  • Bajus M (2010) Pyrolysis of woody material. Pet Coal 52(3):207–214

    Google Scholar 

  • Bilbao P, Mastral JF, Aldea ME, Ceamanos J, Lana JA (2001) Experimental and theoretical study of the ignition and smoldering of wood including convective effects. Combust Flame 126:1363–1372

    Article  Google Scholar 

  • Blasi CD (1993) Effects of solid-phase properties on flames spreading over composite materials. Prog Energy Combust Sci J 19:71–104

    Article  Google Scholar 

  • Grønli MG, Melaaen MC (2000) Mathematical model for wood pyrolysis comparison of experimental measurements with model predictions. Energy Fuel J 14(4):791–800

    Article  Google Scholar 

  • Haseli Y, van Oijen JA, de Goey LPH (2016) Thermo-chemical conversion of single wood particle: a numerical study. Chia Laguna, Cagliari, Sardinia, Italy, 11–15 Sept 2011

  • Janssens M (1991) Piloted ignition of wood: a review. Fire Mater J 15:151–167

    Article  Google Scholar 

  • Kuo JT, Hawing LH (2003) Combust Sci Technol J 175:665–693

  • Kuo JT, His C-L (2005) Pyrolysis and ignition of single wooden spheres heated in high-temperature streams of air. Combust Flame J 142:401–412

    Article  Google Scholar 

  • Lang N, Hamann S, Dieguez-Alonso A, Röpcke J, J-PH van Helden (2016) Light, energy and the environment congress© OSA

  • Lawson DI, Simms DL (1952) The ignition of wood by radiation. Br J Appl Phys 3:288–292

    Article  Google Scholar 

  • Malte PC, Robertus RJ, Strickler MD, Cox RW, Messinger GR, Kennish WJ, Schmidt SC (1977) Experiments on the kinetics and mechanisms of drying small wood particles, research Report TEL-76-B. Thermal Energy laboratory, Washington, State University, Pullman, WA

  • Moghtaderi M, Novozhilov V, Fletcher DF, Kent JH (1997) A new correlation for bench-scale piloted ignition data of wood. Fire Saf J 29:41–59

    Article  Google Scholar 

  • Nunn TR, Howard JB, Longwell JP, Peters WA (1985) Studies of the rapid pyrolysis of sweet gum hardwood. In: Overend R, Milne T, Mudge L (eds) Fundamentals of thermochemical biomass conversion. Elsevier Applied Science Publications, London

    Google Scholar 

  • Porteiro J, Míguez JL, Granada E, Moran JC (2006) Mathematical modelling of the combustion of a single wood particle. Fuel Process Technol 87:169–175

    Article  Google Scholar 

  • Pratik N, Sheth B, Babu V (2006) Kinetic modeling of the pyrolysis of biomass. In: National conference on environmental conservation (NCEC). Birla Institute of Technology and Science (BITS), Pilani

  • Qie J, Yang L, Wang Y, Dai J, Zhou X (2011) Experimental study of the influences of orientation and altitude on pyrolysis and ignition of wood. J Fire Sci 29(3):243–258

    Article  Google Scholar 

  • Scott DS, Piscorz J, Bergougnou MA, Graham R, Overend RP (1988) The role of temperature in fast pyrolysis of cellulose and wood. Ind Eng Chem Res J 27:8–11

    Article  Google Scholar 

  • Shouman AR, El-Sayed SA (1998) Accounting for reactant consumption in the thermal explosion problem III. Criticality conditions for the arrhenius problem. Combust Flame J 113:212–223

    Article  Google Scholar 

  • Shouman AR, Gill W (1984) Equivalence of the criticality condition for both the Semenov and the Frank-Kamentskii problems: comments on Jean-Claude Lermant and Sidney Yip, a generalized Semenov model for thermal ignition in nonuniform temperature systems, Combust Flame 57: 41–54 (1984). Combust Flame J 58:81–86

    Article  Google Scholar 

  • Simms DL (1960) Ignition of cellulosic materials by radiation. Combust Flame J 4:293–300

    Article  Google Scholar 

  • Simms DL (1961) Experiments on the ignition of cellulosic materials by thermal radiation. Combust Flame J 5:369–375

    Article  Google Scholar 

  • Simms DL (1963) On the pilot ignition of wood by radiation. Combust Flame J 7:253–261

    Article  Google Scholar 

  • Simms DL, Law M (1967) The ignition of wet and dry wood by radiation. Combust Flame J 11:377–388

    Article  Google Scholar 

  • Spearpoint MJ, Quintiere JG (2001) Predicting the piloted ignition of wood in the cone calorimeter using an integral model—effect of species, grain orientation and heat flux. Fire Saf J 36:391–415

    Article  Google Scholar 

  • Tia S, Bhattacharya SC, Wibulswas P (1991) Pyrolysis and volatile combustion of a single large lignite particle. Energy J 16(8):1131–1146

    Article  Google Scholar 

  • Wichman IS, Atreya A (1987) A simplified model for the pyrolysis of charring materials. Combust Sci Technol J 68:231–247

    Google Scholar 

  • Willner T, Brunner G (2005) Pyrolysis kinetics of wood and wood components. Chem Eng Technol J 28(10):1212–1225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad A. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, S.A. Ignition of a Pyrolysis Wooden Particle Based on the Thermal Explosion Theory. Iran J Sci Technol Trans Mech Eng 42, 317–327 (2018). https://doi.org/10.1007/s40997-017-0099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0099-8

Keywords

Navigation