Skip to main content
Log in

Sodium–sulfur system: Phase diagram, thermodynamic properties, electrochemical studies, and use in chemical current sources in the molten and solid states

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Published data on the phase diagram, thermodynamic properties, and electrochemical behavior of the sodium–sulfur system are considered. The use of this system in rechargeable chemical current sources (batteries) at different temperatures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapot, M.B., Morachevskii, A.G., Bairachnyi, E.V., et al., Sostoyanie i perspektivy razvitiya vysokoeffektivnykh srednetemperaturnykh akkumulyatorov (State of the Art and Prospects for the Development of High-Performance Medium-Temperature Batteries), Moscow: Informelektro, 1977.

    Google Scholar 

  2. Foulkes, F.R. and Choi, P.T., Can. J. Chem. Eng., 1978, vol. 56, no. 2, pp. 237–245.

    Article  Google Scholar 

  3. Sudworth, J.L., J. Power Sources, 1984, vol. 11, pp. 143–154.

    Article  CAS  Google Scholar 

  4. Borgstedt, H.U. and Mathews, C.K., Applied Chemistry of the Alkali Metals, New York: Plenum, 1987.

    Google Scholar 

  5. Sudworth, J.L. and Tilley, A.R., The Sodium Sulfur Battery, London: Chapman and Hall, 1985.

    Google Scholar 

  6. Chang, R. and Minck, R., J. Power Sources, 1990, vol. 29, pp. 555–563.

    Article  CAS  Google Scholar 

  7. Morachevskii, A.G., Shesterkin, I.A., Busse-Machukas, V.E., et al., Natrii. Svoistva, proizvodstvo, primenenie (Sodium. Properties, Production, and Use), Morachevskii, A.G., Ed., St. Petersburg: Khimiya, 1993.

    Google Scholar 

  8. Morachevskii, A.G., Zh. Prikl. Khim., 1996, vol. 69, no. 9, pp. 1409–1426.

    CAS  Google Scholar 

  9. Sudworth, J.L., Phil. Trans. Royal Soc. A (London), 1996, vol. 354, pp. 1595–1612.

    Article  CAS  Google Scholar 

  10. Morachevskii, A.G., Nauch.-Tekh. Vedom. Sankt-Peterb. Gos. Tekh. Univ., 1999, no. 2, pp. 1409–1426.

    Google Scholar 

  11. Khimicheskie istochniki toka. Spravochnik (Chemical Current Sources. Handbook), Korovin, N.V. and Skundin, A.M., Eds., Moscow: Mosk. Energet. Inst., 2003.

  12. Hueso, K.B., Armand, M., and Rojo, T., Energy Environ. Sci., 2013, vol. 6, pp. 734–749.

    Article  CAS  Google Scholar 

  13. Lu, X., Kirby, B.W., Li, G., et al., Energy Environ. Sci., 2013, vol. 6, pp. 299–306.

    Article  CAS  Google Scholar 

  14. Manthiram, A. and Yu, X., Small, 2015, vol. 11, no. 8, pp. 2108–2114.

    Article  CAS  Google Scholar 

  15. Adelhelm, P., Hartmann, P., Bender, C.L., et al., Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1016–1055.

    Article  CAS  Google Scholar 

  16. Zelenin, S.N., Chemodanova, A.N., Agzibekova, L.O., and Khotina, G.K., Sostoyanie i razrabotka sernonatrievykh akkumulyatorov za rubezhom (State of the Art and Development of Sodium–Sulfur Batteries beyond Russia), Moscow: Informelektro, 1987.

    Google Scholar 

  17. Burmakin, E.I., Tverdye elektrolity s provodimost’yu po kationam shchelochnykh metallov (Solid Electrolytes with Alkali Metal Cation Conductivity), Moscow: Nauka, 1992.

    Google Scholar 

  18. Sangster, J. and Pelton, A.D., J. Phase Equilibria, 1997, vol. 18, no. 1, pp. 89–96.

    Article  CAS  Google Scholar 

  19. Maiorova, E.A., Romanchenko, N.M., and Morachevskii, A.G., Elektrokhimiya, 1981, vol. 17, no. 4, pp. 523–527.

    CAS  Google Scholar 

  20. Janz, G.J., J. Phys. Chem. Ref. Data, 1988, vol. 17, suppl. 2.

    Google Scholar 

  21. Klebanov, E.B., Sharivker, V.S., and Morachevskii, A.G., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1986, no. 6, pp. 105–107.

    Google Scholar 

  22. Wang, M.-H. and Newman, J., J. Electrochem. Soc., 1995, vol. 142, no. 3, pp. 761–764.

    Article  CAS  Google Scholar 

  23. Morachevskii, A.G. and Kozin, L.F., Termodinamika i materialovedenie poluprovodnikov (Thermodynamics and Materials Science of Semiconductors), Glazov, V.M., Ed., Moscow: Metallurgiya, 1992, pp. 52–74.

    Google Scholar 

  24. Prigogine, I. and Defay, R., Chemische Thermodynamik, Leipzig: Grundstoffindustrie, 1962.

    Google Scholar 

  25. Morachevskii, A.G. and Firsova, E.G., Termodinamika zhidkikh metallov i splavov (Thermodynamics of Liquid Metals and Alloys), St. Petersburg: Lan’, 2016.

    Google Scholar 

  26. Mills, K.C., Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, London: Butterworth, 1974.

    Google Scholar 

  27. Lindberg, G., Larsson, A., Raberg, M., et al., J. Chem. Thermodyn., 2007, vol. 39, pp. 44–48.

    Article  CAS  Google Scholar 

  28. Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh splavov (Electrochemical Methods of Investigation in Thermodynamics of Metal Alloys), Moscow: Akademkniga, 2003.

    Google Scholar 

  29. Wenzel, S., Metelmann, H., Raiß, G., et al., J. Power Sources, 2013, vol. 243, pp. 758–765.

    Article  CAS  Google Scholar 

  30. Sharivker, V.S., Ratkje, S.K., and Cleaver, B., Electrochim. Acta, 1996, vol. 44, no. 15, pp. 2381–2384.

    Article  Google Scholar 

  31. Morachevskii, A.G., Sharivker, V.S., Demidov, A.I., et al., Rasplavy, 1988, vol. 2, no. 3, pp. 116–117.

    CAS  Google Scholar 

  32. Wen, Z., Cao, J., Gu, Z., et al., Solid State Ionics, 2008, vol. 179, pp. 1697–1701.

    Article  CAS  Google Scholar 

  33. Dunn, B., Klamath, H., and Tarascon, J.-M., Science, 2011, vol. 334, pp. 928–935.

    Article  CAS  Google Scholar 

  34. Armand, M. and Tarascon, J.-M., Nature, 2008, vol. 451, pp. 652–657.

    Article  CAS  Google Scholar 

  35. Kim, H., Jeong, G., Kim, Y.-U., et al., Chem. Soc. Rev., 2013, vol. 43, pp. 9011–9034.

    Article  Google Scholar 

  36. Wen, Z., Hu, Y., Wu, X., et al., Adv. Funct. Mater., 2013, vol. 23, pp. 1005–1018.

    Article  CAS  Google Scholar 

  37. Bukun, N.G., Domashev, I.A., Moskvina, E.I., and Ukshe, E.A., Izv. Akad. Nauk SSSR, Neorg. Mater., 1988, vol. 24, no. 3, pp. 433–447.

    Google Scholar 

  38. Tokoi, H., Watahiki, N., and Sumida, I., J. Electrochem. Soc., 1991, vol. 138, no. 5, pp. 1327–1331.

    Article  CAS  Google Scholar 

  39. Tokoi, H., Takahashi, K., and Shimoyashiki, S., J. Electrochem. Soc., 1992, vol. 139, no. 1, pp. 10–15.

    Article  CAS  Google Scholar 

  40. Tokoi, H., Watahiki, N., Izumi, S., and Satoh, K., J. Electrochem. Soc., 1999, vol. 146, no. 11, pp. 4005–4008.

    Article  CAS  Google Scholar 

  41. Heusler, K.E., Grzegorzewski, A., and Knödler, R., J. Electrochem. Soc., 1993, vol. 140, no. 2, pp. 426–431.

    Article  CAS  Google Scholar 

  42. Park, C.-W., Ahn, J.-H., Ryu, H.-S., et al., Electrochem. Solid-State Lett., 2006, vol. 9, no. 3, pp. A123–A125.

    Article  CAS  Google Scholar 

  43. Park, C.-W., Ryu, H.-S., Kim, K.-W., et al., J. Power Sources, 2007, vol. 165, pp. 450–454.

    Article  CAS  Google Scholar 

  44. Wang, J., Yang, J., Nuli, Y., and Holze, R., Electrochem. Commun., 2007, vol. 9, pp. 31–34.

    Article  CAS  Google Scholar 

  45. Kim, J.-S., Ahn, H.-J., Kim, I.-P., et al., J. Solid State Electrochem., 2008, vol. 12, pp. 861–865.

    Article  CAS  Google Scholar 

  46. Ryu, H., Kim, T., Kim, K., et al., J. Power Sources, 2011, vol. 196, pp. 5186–5190.

    Article  CAS  Google Scholar 

  47. Kumar, D., Suleman, M., and Hashmi, S.A., Solid State Ionics, 2011, vol. 202, pp. 45–53.

    Article  CAS  Google Scholar 

  48. Hwang, H., Jung, D.S., and Kim, J.S., Nano Lett., 2013, vol. 13, pp. 4532–4538.

    Article  CAS  Google Scholar 

  49. Hayashi, A., Noi, K., Sakuda, A., and Tatsumisago, M., Nature Commun., 2012, vol. 3, p. 856.

    Article  Google Scholar 

  50. Xin, S., Yin, Y.-X., Guo, Y.-G., and Wan, L.-J., Adv. Mater., 2014, vol. 26, pp. 1261–1265.

    Article  CAS  Google Scholar 

  51. Bauer, I., Kohl, M., Althues, H., and Kaskel, S., Chem. Commun., 2014, vol. 50, pp. 3208–3210.

    Article  CAS  Google Scholar 

  52. Zheng, S., Han, P., Han, Z., et al., Adv. Energy Mater., 2014, vol. 4, article no. 1400226, pp. 1–7.

    Google Scholar 

  53. Yu, X.W. and Manthiram, A., ChemElectroChem., 2014, vol. 1, pp. 1275–1280.

    Article  CAS  Google Scholar 

  54. Yu, X.W. and Manthiram, A., Phys. Chem. Lett., 2014, vol. 5, pp. 1943–1947.

    Article  CAS  Google Scholar 

  55. Yu, X.W. and Manthiram, A., J. Phys. Chem. C, 2014, vol. 118, pp. 22952–22959.

    Article  CAS  Google Scholar 

  56. Yu, X.W. and Manthiram, A., Chem. Eur. J., 2015, vol. 21, pp. 4233–4237.

    Article  CAS  Google Scholar 

  57. Yu, X.W. and Manthiram, A., Adv. Mater. Sci., 2015, vol. 5, article no. 1500330, pp. 1–6.

    Google Scholar 

  58. Yu, X.W. and Manthiram, A., Chem. Mater., 2016, vol. 28, pp. 896–905.

    Article  CAS  Google Scholar 

  59. Nagata, H. and Chikusa, Y., Chem. Lett., 2014, vol. 43, pp. 1333–1334.

    Article  CAS  Google Scholar 

  60. Kim, I., Park, J.-Y., Kim, C.H., et al., J. Power Sources, 2016, vol. 301, pp. 332–337.

    Article  CAS  Google Scholar 

  61. Kim, I., Park, J.-Y., Kim, C., et al., J. Electrochem. Soc., 2016, vol. 163, no. 5, pp. A611–A616.

    Google Scholar 

  62. Kim, I., Kim, C.H., Choi, S.H., et al., J. Power Sources, 2016, vol. 307, pp. 31–37.

    Article  CAS  Google Scholar 

  63. Fan, L., Ma, R., Yang, Y., et al., Nano Energy, 2016, vol. 28, pp. 304–310.

    Article  CAS  Google Scholar 

  64. Okuyama, R., Nakashima, H., Sano, T., and Nomura, E., J. Power Sources, 2001, vol. 93, pp. 50–54.

    Article  CAS  Google Scholar 

  65. Kim, T.B., Choi, J.W., and Ryu, H.S., J. Power Sources, 2007, vol. 174, pp. 1275–1278.

    Article  CAS  Google Scholar 

  66. Kim, T.B., Jung, W.H., Ryu, H.S., et al., J. Alloys. Comp., 2008, vol. 449, pp. 304–307.

    Article  CAS  Google Scholar 

  67. Kim, J.-S., Yu, J.H., Ryu, H.S., et al., Rev. Adv. Mater. Sci., 2011, vol. 28, pp. 107–110.

    CAS  Google Scholar 

  68. Kim, J.-S., Ahn, H.-J., Ryu, H.S., et al., J. Power Sources, 2008, vol. 178, pp. 852–856.

    Article  CAS  Google Scholar 

  69. Ryu, H.-S., Kim, J.-S., Park, J., et al., J. Power Sources, 2013, vol. 244, pp. 764–770.

    Article  CAS  Google Scholar 

  70. Kim, J.-S., Cho, G.B., Kim, K.-W., et al., Curr. Appl. Phys., 2011, vol. 11, pp. 215–218.

    Article  Google Scholar 

  71. Liu, X.J., Kang, S.D., Kim, J.-S., et al., Rev. Adv. Mater. Sci., 2011, vol. 28, pp. 98–102.

    CAS  Google Scholar 

  72. Kim, J.-S., Kim, D.-Y., Cho, G.B., et al., J. Power Sources, 2009, vol. 189, pp. 864–888.

    Article  CAS  Google Scholar 

  73. Ryu, H.-S., Kim, J.-S., Park, J.-S., et al., J. Electrochem. Soc., 2013, vol. 160, no. 2, pp. A3–A343.

    Google Scholar 

  74. Wang, Y., Zhang, Y., and Jiang, C., Chin. High Technol. Lett., 2016, vol. 26, no. 5, pp. 511–518.

    Google Scholar 

  75. Wei, S., Xu, S., Agrawral, A., et al., Nature Commun., 2016, vol. 7, artricle no. 11722.

    Google Scholar 

  76. Chen, Y.V., Liang, W., Li, S., et al., J. Mater. Chem. A, 2016, vol. 4, no. 32, pp. 12471–12478.

    Article  CAS  Google Scholar 

  77. Kim, S.I., Park, W.I., Jung, K., and Kim, C.-S., J. Power Sources, 2016, vol. 320, pp. 37–42.

    Article  CAS  Google Scholar 

  78. Jung, K., Colker, J.P., Cao, Y., et al., J. Power Sources, 2016, vol. 324, pp. 665–673.

    Article  CAS  Google Scholar 

  79. Wang, Y.-X., Yang, J., Lai, W., et al., J. Am. Chem. Soc., 2016, vol. 138, no. 51, pp. 16576–16579.

    Article  CAS  Google Scholar 

  80. Hu, L., Lu, Y., Zhang, T., et al., Appl. Mater. Interfaces, 2017, vol. 9, no. 16, pp. 13813–13818.

    Article  CAS  Google Scholar 

  81. Kohl, M., Borrmann, F., Althues, H., and Kaskel, S., Adv. Energy Mater., 2016, vol. 6, article no. 1502185.

    Google Scholar 

  82. Saruta, K., in IEEE 2nd Annual Southern Power Electronics Conf. SPEC 2016, paper no. 7846045.

  83. Qiang, Z., Chen, Y.-M., Xia, Y., et al., Nano Energy, 2017, vol. 32, pp. 59–68.

    Article  CAS  Google Scholar 

  84. Carter, R., Oakes, L., Douglas, A., et al., Nano Lett., 2017, vol. 17, no. 3, pp. 1863–1869.

    Article  CAS  Google Scholar 

  85. Yaroslavtsev, A.B., Russ. Chem. Rev., 2016, vol. 85, no. 11, pp. 1255–1276.

    Article  CAS  Google Scholar 

  86. Morachevskii, A.G. and Demidov, A.I., Termodinamika splavov litiya s elementami podgruppy ugleroda (С, Si, Ge, Sn, Pb) (Thermodynamics of Lithium Alloys with Carbon Subgroup Elements (С, Si, Ge, Sn, Pb)), St. Petersburg: Politekh. Univ., 2016.

    Google Scholar 

  87. Morachevskii, A.G., Russ. J. Appl. Chem., 2015, vol. 88, no. 11, pp. 1637–1649.

    Article  Google Scholar 

  88. Morachevskii, A.G., Russ. J. Appl. Chem., 2016, vol. 89, no. 7, pp. 1043–1053.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Morachevskii.

Additional information

Original Russian Text © A.G. Morachevskii, A.I. Demidov, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 5, pp. 521−536.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morachevskii, A.G., Demidov, A.I. Sodium–sulfur system: Phase diagram, thermodynamic properties, electrochemical studies, and use in chemical current sources in the molten and solid states. Russ J Appl Chem 90, 661–675 (2017). https://doi.org/10.1134/S1070427217050019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217050019

Navigation