Skip to main content
Log in

Photocatalytic activity of titanium dioxide nanoparticles produced by methods of high-energy physical dispersion

  • Processes Using Various Catalyst Systems
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Photocatalytic activity of titanium dioxide nanoparticle samples under study is almost uncorrelated with their phase composition and, in particular, with the content of the anatase phase. The photocatalytic activity depends on the annealing temperature of the nanoparticles. The photocatalytic activity is positively affected by an ultrasonic radiation of the nanoparticles. The highest photocatalytic activity, comparable with that of the AEROXIDE P25 reference nanopowders, is observed for nanoparticles produced by a method of electrical explosion of wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parmon, V.N., Catal. Today, 1997, vol. 39, no. 3, pp. 137–144.

    Article  CAS  Google Scholar 

  2. Zhang, L., Dillert, R., Bahnemann, D., and Vormoor, M., Energy Environ. Sci., 2012, vol. 5, no. 3, pp. 7491–7507.

    Article  CAS  Google Scholar 

  3. Thevenet, F., Guatella, O., Herrmann, J.M., et al., Appl. Catal., B, 2005, vol. 61, no. 5, pp. 58–68.

    Article  CAS  Google Scholar 

  4. House, R.L., Iha, N.Y.M., Coppo, R.L., et al., J. Photochem. Photobiol., C, 2015, vol. 25, no. 8, pp. 32–45.

    Article  CAS  Google Scholar 

  5. Etacheri, V., Di Valentin, C., Schneider, J., et al., J. Photochem. Photobiol., C, 2015, vol. 25, no. 8, pp. 1–29.

    Article  CAS  Google Scholar 

  6. Pelaez, M., Nolan, N.T., Pillai, S.C., et al., Appl. Catal., B, 2012, vol. 125, no. 6, pp. 331–349.

    Article  CAS  Google Scholar 

  7. Krasilnikov, V.N., Zhukov, V.P., Baklanova, I.V., et al., Catal. Lett., 2015, vol. 145, no. 6, pp. 1290–1300.

    Article  CAS  Google Scholar 

  8. Wang, Y., He, Y., Lai, Q., and Fan, M., J. Environ. Sci., 2014, vol. 26, no. 11, pp. 2139–2177.

    Article  Google Scholar 

  9. Kotov, Yu.A., Samatov, O.M., Ivanov, M.G., et al., Tech. Phys., 2011, vol. 56, no. 5, pp. 652–655.

    Article  CAS  Google Scholar 

  10. Kotov, Yu.A., J. Nanoparticle Res., 2003, vol. 5, no. 5, pp. 539–550.

    Article  Google Scholar 

  11. Chaker, H., Chrif-Aouali, L., Khaoulani, S., et al., J. Photochem. Photobiol., A, 2016, vol. 318, no. 3, pp. 142–149.

    Article  CAS  Google Scholar 

  12. Wang, G., Xu, L., Zhang, J., et al., Int. J. Photoenergy, 2012, vol. 2012, no. 1, pp. 1–9.

    Google Scholar 

  13. Pokhrel, N., Vabbina, P.K., and Pala, N., Ultrason. Sonochem., 2016, vol. 29, no. 3, pp. 104–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Mansurov.

Additional information

Original Russian Text © R.R. Mansurov, A.P. Safronov, O.M. Samatov, I.V. Beketov, A.I. Medvedev, N.V. Lakiza, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 2, pp. 156−163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansurov, R.R., Safronov, A.P., Samatov, O.M. et al. Photocatalytic activity of titanium dioxide nanoparticles produced by methods of high-energy physical dispersion. Russ J Appl Chem 90, 179–185 (2017). https://doi.org/10.1134/S1070427217020033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217020033

Navigation