Skip to main content
Log in

Effect of the sequence of chemical transformations on the spatial segregation of components and formation of periclase-spinel nanopowders in the MgO–Fe2O3–H2O System

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Specific features of the process in which oxide nanopowders are formed in a hydrothermal treatment of coprecipitated magnesium and iron oxides were studied. It was shown that the rate at which oxide nanoparticles are formed increases when reagents structurally close to the final product are used. It was found that, with the hydrothermal treatment of coprecipitated magnesium and iron hydroxides at 450°C combined with the subsequent thermal treatment in air at temperatures of 400–600°C, it is possible to obtain a homogeneous mixture of nanocrystalline powders based on an iron-containing spinel phase and magnesium oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valdiglesias, V., Fernández-Bertólez, N, Kiliç, G., et al., J. Trace Elem. Med. Biol., 2016, vol. 38, pp. 53–63.

    Article  CAS  Google Scholar 

  2. Mirzaeia, H. and Darroudi, M., Ceram. Int., 2017, vol. 43, no. 1, Part B, pp. 907–914.

    Article  Google Scholar 

  3. Yadavalli, T. and Shukla, D., Nanomed: Nanotechnol. Biol. Med., 2017, vol. 13, no. 1, pp. 219–230.

    Article  CAS  Google Scholar 

  4. DeCoteau, W., Heckman, K.L. Estevez, A.E., Reed, K.J., et al., Nanomed.: Nanotechnol. Biol. Med., 2016, vol. 12, no. 8, pp. 2311–2320.

    Article  CAS  Google Scholar 

  5. Lukas, E., Decker, S., Khaleel, A., et al., Chem.–Eur. J., 2001, vol. 7, no. 12, pp. 2505–2510.

    Article  Google Scholar 

  6. Hristovski, K., Baumgardner, A., and Westerhoff, P., J. Hazard. Mater., 2007, vol. 147, pp. 265–274.

    Article  CAS  Google Scholar 

  7. Al’myasheva, O.V., Vlasov, E.A., Khabenskii, V.B., and Gusarov, V.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 2, pp. 217–221.

    Article  Google Scholar 

  8. Wang, S., Wang, Z., and Zha, Z., Dalton Trans., 2009, no. 43, pp. 9363–9373.

    Article  Google Scholar 

  9. Nassar, M.Y., Ahmed, I.S., and Samir, I., Spectrochim. Acta, A, 2014, vol. 131, pp. 329–334.

    Article  CAS  Google Scholar 

  10. Paul, D.R. and Robeson, L.M., Polymer, 2008, vol. 49, pp. 3187–3204.

    Article  CAS  Google Scholar 

  11. Yudin, V.E., Otaigbe, J.U., Svetlichnyi, V.M., et al., Express Polym. Lett., 2008, vol. 2, no. 7, pp. 485–493.

    Article  CAS  Google Scholar 

  12. Khirade, P.P., Birajdar, S.D., Raut, A.V., and Jadhav, K.M., Ceram. Int., 2016, vol. 42, no. 10, pp. 12441–12451.

    Article  CAS  Google Scholar 

  13. Tretyakov, Yu.D. and Goodilin, E.A., Russ. Chem. Rev., 2009, vol. 78, no. 9, pp. 801–820.

    Article  CAS  Google Scholar 

  14. Azurdia, J., Marchal, J., and Laine, R.M., J. Am. Ceram. Soc., 2006, vol. 89, no. 9, pp. 2749–2756.

    CAS  Google Scholar 

  15. Ruud van Ommen, J., Valverde, J.M., and Pfeffer, R., J. Nanopart. Res., 2012, vol. 14, no. 3, pp.737.

    Article  Google Scholar 

  16. Wei, D., Dave, R., and Pfeffer, R., J. Nanopart. Res., 2002, vol. 4, nos. 1–2, pp. 21–41.

    Article  CAS  Google Scholar 

  17. Kirillova, S.A. and Almjashev, V.I., Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 6, pp. 98–104.

    Google Scholar 

  18. Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., et al., Ceram. Int., 2013, vol. 39, pp. 1379–1384.

    Article  CAS  Google Scholar 

  19. Komlev, A.A. and Gusarov, V.V., Inorg. Mater., 2014, vol. 50, no. 12, pp. 1247–1251.

    Article  CAS  Google Scholar 

  20. Aliotta, C., Liotta, L.F., La Parola, V., et al., Appl. Catal., B, 2016, vol. 197, pp. 14–22.

    Article  CAS  Google Scholar 

  21. Lee, P.Y., Suematsu, H., Yano, T., and Yatsui, K., J. Nanopart. Res., 2006, vol. 8, pp. 911–917.

    Article  CAS  Google Scholar 

  22. Adak, A.K., Saha, S.K., and Pramanik, P., J. Mater. Sci. Lett., 1997, vol. 16, pp. 234–235.

    Article  CAS  Google Scholar 

  23. Pei, L.-Z., Yin, W.-Y., Wang, J.-F., et al., Mater. Res., 2010, vol. 13, no. 3, pp. 339–343.

    Article  CAS  Google Scholar 

  24. Ilhan, S., Izotova, S.G., and Komlev, A.A., Ceram. Int., 2015, vol. 41, pp. 577–585.

    Article  CAS  Google Scholar 

  25. Yapryntsev, A.D., Baranchikov, A.E., Zabolotskaya, A.V., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, pp.1383–1391.

    Article  CAS  Google Scholar 

  26. Tadic, M., Panjan, M., Damnjanovic, V., and Milosevic, I., Appl. Surf. Sci., 2014, vol. 320, pp. 183–187.

    Article  CAS  Google Scholar 

  27. Huerta, A., Calderon, A., Yee-Madeira, H., et al., MRS Online Proc. Libr. Arch., 1999, vol. 581, pp.253.

    Article  Google Scholar 

  28. Huerta, A., Calderon, H.A., and Umemoto, M., J. Metastable Nanocryst. Mater., 2000, vol. 10, pp. 631–636.

    Article  Google Scholar 

  29. Khot, V.M., Salunkhe, A.B., Phadatare, M.R., and Pawar, S.H., Mater. Chem. Phys., 2012, vol. 132, pp. 782–787.

    Article  CAS  Google Scholar 

  30. Thant, A.A., Srimala, S., Kaung, P., et al., J. Aust. Ceram. Soc., 2010, vol. 46, no. 1, pp. 11–14.

    CAS  Google Scholar 

  31. Köfestein, R., Walther, T., Hesse, D., and Ebbinghaus, S.G., J. Mater. Sci., 2013, vol. 48, no. 19, pp. 6509–6518.

    Article  Google Scholar 

  32. Treilleux, M., Fuchs, G., Perez, A., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 1988, vol. 32, nos. 1–4, pp. 397–400.

    Article  Google Scholar 

  33. Li, F., Yang, Q., Evans, D.G., and Duan, X., J. Mater. Sci., 2005, vol. 40, pp. 1917–1922.

    Article  CAS  Google Scholar 

  34. Komlev, A.A. and Ilhan, S., Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 4, pp. 114–121.

    Google Scholar 

  35. Hadnadev-Kostic, M.S., Vulic, T.J., and Marinkovic-Neducin, R.P., J. Serbian Chem. Soc., 2010, vol. 75, no. 9, pp. 1251–1257.

    Article  CAS  Google Scholar 

  36. Hadnadev-Kostic, M.S., Vulic, T.J., Marinkovic-Neducin, R.P., et al., J. Serbian Chem. Soc., 2011, vol. 76, no. 12, pp. 1661–1671.

    Article  CAS  Google Scholar 

  37. Nikiforov, M.P. Chernysheva, M.V., Lukashin, A.V., et al., Doklady Chem., 2003, vol. 391, nos. 1–3, pp. 173–176.

    Article  CAS  Google Scholar 

  38. Rives, V., Mater. Chem. Phys., 2002, vol. 75, pp. 19–25.

    Article  CAS  Google Scholar 

  39. Kovanda, F., Jindova, E., and Dousova, B., Acta Geodynam. Geomater., 2009, vol. 6, no. 1, pp.111.

    CAS  Google Scholar 

  40. Gouveia, D.X., Ferreira, O.P., Souza Filho, A.G., et al., J. Mater. Sci., 2007, vol. 42, no. 2, pp. 534–538.

    Article  CAS  Google Scholar 

  41. Almjasheva, O.V. and Gusarov, V.V., Russ. J. Appl. Chem., 2016, vol. 89, no. 6, pp. 851–856.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Komlev.

Additional information

Original Russian Text © A.A. Komlev, V.V. Panchuk, V.G. Semenov, O.V. Almjasheva, V.V. Gusarov, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 12, pp. 1518−1524.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komlev, A.A., Panchuk, V.V., Semenov, V.G. et al. Effect of the sequence of chemical transformations on the spatial segregation of components and formation of periclase-spinel nanopowders in the MgO–Fe2O3–H2O System. Russ J Appl Chem 89, 1932–1938 (2016). https://doi.org/10.1134/S1070427216120028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216120028

Navigation