Skip to main content
Log in

Catalytic conversion of benzene to phenol

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Phenol is very useful intermediate in the manufacture of petrochemicals, drugs, agrochemicals, and plastics. Commercially, phenol is produced by a three-step, high-energy consumption process known as the cumene process. The conversion of a chemical to a value-added product is always economically desirable. More than 90% of phenol consumption in the world is manufactured by the multistep cumene process, in which acetone is coproduced in 1: 1 molar ratio with respect to phenol. However, the drawbacks of the three-step cumene process have spurred the development of more economical routes to decrease energy consumption, avoid the formation of explosive cumene hydroperoxide, and increase the yield. The objective of this article is to highlight benzene-to-phenol conversion technologies with emphasis on direct conversion methods. Gas phase and liquid phase reactions are the two main routes for direct oxidation of benzene to phenol. Indirect methods, such as the cumene process, and direct methods of benzene-to-phenol conversion are discussed in detail. Also discussed is the single-step reaction of benzene to phenol using oxidants such as O2, N2O, and H2O2. Catalytic conversion of benzene to value-added phenol using a chemically converted graphene-based catalyst, a cost-effective carbon material, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niwa, S., Eswaramoorthy, M., Nair J., Raj, A., Itoh, N., Shoji, H., Namba, T., and Mizukami, F., Science, 2002, vol. 295, pp. 105–107.

    Article  CAS  Google Scholar 

  2. Notte, P.P., Top. Catal., 2002, vol. 13, pp. 387–394.

    Article  Google Scholar 

  3. Schmidt, R.J., Appl. Catal. A, 2005, vol. 280, pp. 89–103.

    Article  CAS  Google Scholar 

  4. Motz, J.L., Heinichen, H., and Holderich, W.F., J. Mol. Catal. A: Chem., 1989, vol. 136, pp. 175–184.

    Article  Google Scholar 

  5. Ribera, A., Arends, I.W.C.E., Vries, S.de., Perez-Ramirez, J., and Sheldom, R.A., J. Catal., 2000, vol. 195, pp. 287–297.

    Article  CAS  Google Scholar 

  6. Stockmann, M., Konietzni, F., Notheis, J.U., Voss, J., Keune, W., and Maier, W.F., Appl. Catal. A, 2001, vol. 208, pp. 343–358.

    Article  CAS  Google Scholar 

  7. Zhang, W.Z., Wang, J.L., Tanev, P.T., and Pinnavaia, T.J., Chem. Commun., 1996, pp. 979–980.

    Google Scholar 

  8. Yamanka, H., Hamada, R., Nibuta, H., Nishiyama, S., and Tsurya, S., J. Mol.Cat. A: Chem., 2002, vol. 178, pp. 89–95.

    Article  Google Scholar 

  9. Ehrich, H., Berndt, H., Pohl, M.M., Jahnisch, K., and Baerns, M., Appl. Catal. A, 2002, vol. 230, pp. 271–280.

    Article  CAS  Google Scholar 

  10. Panov, G.I., Uriarte, A.K., Rodkin, M.A., and Sobolev, V.I., Catal. Today, 1998, vol. 41, pp. 365–385.

    Article  CAS  Google Scholar 

  11. Seo, Y.J., Tagawa, T., and Goto, S., React. Kinet. Catal. Lett., 1995, vol. 54, pp. 265–270.

    Article  CAS  Google Scholar 

  12. Kanzaki, H., Kitamura, T., Hamada, R., Nishiyama, S., and Tsuruya, S., J. Mol. Catal. A, 2004, vol. 208, pp. 203–211.

    Article  CAS  Google Scholar 

  13. Chen, Y.W. and Lu, Y.H., Ind. Eng. Chem. Res., 1998, vol. 38, pp. 1893–1903.

    Article  Google Scholar 

  14. Okamura, J., Nishiyama, S., Surya, S., and Masai, M., J. Mol. Catal.A, 1998, vol. 135, pp. 133–142.

    Article  CAS  Google Scholar 

  15. Seo Y.J., Tagawa T., and Goto S., J. Chem. Eng. Jpn., 1994, vol. 27, no. 3, p. 307–308.

    Article  CAS  Google Scholar 

  16. Miyake, T., Hamada, M., Niwa, H., Nishizuka, M., and Oguri, M., J. Mol. Catal. A, 2002, vol. 178, pp. 199–204.

    Article  CAS  Google Scholar 

  17. Zhang, J., Tang, Y., Li, G., and Hu, C., Appl. Catal. A, 2005, vol. 278, pp. 251–261.

    Article  CAS  Google Scholar 

  18. Xiao, F.S., Sun, J., Meng, X., and Yu, R., Appl. Catal. A, 2001, vol. 207, pp. 267–271.

    Article  CAS  Google Scholar 

  19. Liu, Y., Murata, K., and Inaba, M., Catal. Commun., 2005, vol. 6, no. 10, pp. 679–683.

    Article  CAS  Google Scholar 

  20. Dubey, A. and Kannan, S., Catal. Commun., 2005, vol. 6, pp. 394–398.

    Article  CAS  Google Scholar 

  21. Choi, J.S., Kim, T.H., Choo, K.Y., Sung, J.S., Saidutta, M.B., Ryu, S.O., and Song, S.D., Appl. Catal. A, 2005, vol. 290, pp. 1–8.

    Article  CAS  Google Scholar 

  22. Lee, M.S., Lee, G.D., Park, S.S., and Hong, S.S., J. Ind. Eng. Chem., 2003, vol. 9, pp. 89–95.

    CAS  Google Scholar 

  23. Yurnov, I., Bulushev, D.M., Renken, A., and Kiwi-Minsker, L., J. Catal., 2004, vol. 227, pp.138–147.

  24. Tanarungsun, G., Kiatkittipong, W., Assabumrungrat, S., Yamad, H., Agawa, T., and Praserthdam, P., Ind. Eng. Chem., 2007, vol. 13 (3), pp. 444–451.

    CAS  Google Scholar 

  25. Gholami, J., Badiei, A.R., Ziarani, G.M., and Abbasi, A.R., J. Nano. Sci., 2012, vol. 1, pp. 69–75.

    Google Scholar 

  26. Golami, J., Badiei, A., Abbasi, A., and Ziarani, G.M., Int. J. Chem. Tech. Res., 2009, vol. 1, no. 3, pp. 426–429.

    Google Scholar 

  27. Xiao-ke, H., Liang-fang, Z., Bin, G., Qiu-yuan, L., Guiying, L., and Chang-wei, H., Chem. Res. Chinese Univ., 2011, vol. 27, no. 3, pp. 503–507.

    Google Scholar 

  28. Arab, P., Badiei, A., Koolivand, A., and Ziarani, G.M., Chinese J. Catal., 2011,vol. 32, no. 2, pp. 258–263.

  29. Goto, M., Kajita, Y., and Masuda, H., Indian J. Chem., 2011, vol. 50, pp. 459–464.

    Google Scholar 

  30. Gholami, J., Badiei, A., Abbasi, A., Manteghian, M., and Ziarani, G.M., Iranica J. Energ. & Envir., 2013, vol. 4, pp. 24–27.

    CAS  Google Scholar 

  31. Long, Z., Zhou, Y., Chen, G., Ge, W., and Wang, J., Scientifi c Reports, 2013, pp. 1–5.

    Google Scholar 

  32. Wen, G., Wu, S., Li, B., Dai, C., and Su, D.S., Angew. Chem. Int. Ed., 2015, vol. 54, pp. 1–6.

    Article  Google Scholar 

  33. Yang, J.H., Sun, G., Gao, Y., Zhao, H., Tang, P., Tan, J., Lu, A.H., and Ma D., Energ. Envir. Sci., 2013, vol 6, pp. 793–798.

    Article  CAS  Google Scholar 

  34. Li, Y., Wang, Z., Chen, R., Wang, Y., Xing, W., Wang, J., and Huang, J., Catal. Commun., 2015, vol. 55, pp. 34–37.

    Article  CAS  Google Scholar 

  35. Jing, L., Zhang, F., Zhong, Y. and Zhu, W., Chinese J. Chem. Eng., 2014, vol. 22, pp.1220–1225.

    Article  CAS  Google Scholar 

  36. Jiang, T., Wang, W., and Han, B., New J. Chem., 2013, vol. 37, pp. 1654–1664.

    Article  CAS  Google Scholar 

  37. Wang, X., Meng, B., Zhang, X., Zhuang, S., and Liu, L., Ind. Eng. Chem. Res., 2014, vol. 53, pp. 5636–5645.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Danisha.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Mesfer, M.K., Danisha, M. & Ahmed, S.M. Catalytic conversion of benzene to phenol. Russ J Appl Chem 89, 1869–1878 (2016). https://doi.org/10.1134/S1070427216110197

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216110197

Navigation