Skip to main content
Log in

Potential of thermal analysis as applied to studying the kinetics of thermal degradation of polymers

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of thermal degradation of low-density polyethylene was studied by TGA and DSC at heating rates from 0.5 to 40 deg min–1. Causes of significant discrepancies in the published effective kinetic constants of the overall reaction of thermal degradation of the polymers, determined using different experimental methods and different data treatment procedures, were analyzed. The possibility of using random break model as an alternative approach to describing polymer thermal degradation curves obtained by thermal analysis methods was demonstrated by the example of polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coelho, A., Costa, L., Marques, M.M., et al., React. Kinet. Mechan. Catal., 2010, vol. 99, pp. 5–15.

    CAS  Google Scholar 

  2. Peterson, J.D., Vyazovkin, S., and Wight, C.A., Macromol. Chem. Phys., 2001, vol. 202, no. 6, pp. 775–784.

    Article  CAS  Google Scholar 

  3. Koptelov, A.A. and Koptelov, I.A., Polym. Sci., Ser. B, 2009, vol. 51, nos. 7–8, pp. 313–319.

    Article  Google Scholar 

  4. Rychly, J. and Richla, L., J. Therm. Anal., 1989, vol. 35, no. 1, pp. 77–90.

    Article  CAS  Google Scholar 

  5. Gao, Z., Amasaki, I., Kaneko, T., and Nakada, M., Polym. Degrad. Stab., 2003, vol. 81, no. 1, pp. 125–130.

    Article  CAS  Google Scholar 

  6. Costa, D.A., Filho, J.G.A.P., Embirucu, M., et al., Proc. 2nd Mercosur Congr. on Chem. Eng. & 4th Mercosur Congr. on Process Systems Eng. Rio de Janeiro (Brasil), 2005. www.enpromer2005.eq.ufrj.br/.

    Google Scholar 

  7. Kayacan, I. and Dogan, O.M., Energy Sources, Part A, 2008, vol. 30, no. 5, pp. 385–391.

    Article  CAS  Google Scholar 

  8. Fernandes, G.J.T., Fernandes, V.J., and Araujo, A.S., Catal. Today, 2002, vol. 75, nos. 1–4, pp. 233–238.

    Article  CAS  Google Scholar 

  9. Vyazovkin, S., Burnham, A.K., Criado, J.M., et al., Thermochim. Acta, 2011, vol. 520, pp. 1–19.

    Article  CAS  Google Scholar 

  10. Koptelov, A.A., Milekhin, Yu.M., Sadovnichii, D.N., and Shishov, N.I., High Temp., 2008, vol. 46, no. 2, pp. 261–274.

    Article  CAS  Google Scholar 

  11. Arnold, M., Veress, G.E., Paulic, J., and Paulik, F., Anal. Chim. Acta, 1981, vol. 124, pp. 341–350.

    Article  CAS  Google Scholar 

  12. Saito, O., J. Phys. Soc. Jpn., 1958, vol. 13, no. 2, pp. 198–206.

    Article  CAS  Google Scholar 

  13. Koptelov, A.A., Milekhin, Yu.M., and Baranets, Yu.N., Russ. J. Appl. Chem., 2009, vol. 82, no. 11, pp. 2047–2054.

    Article  CAS  Google Scholar 

  14. Koptelov, A.A., Milekhin, Yu.M., and Baranets, Yu.N., Russ. J. Phys. Chem. B, 2012, vol. 6, no. 5, pp. 626–633.

    Article  CAS  Google Scholar 

  15. Koptelov, I.A. and Rogozina, A.A., Tepl. Prots. Tekh., 2015, vol. 7, no. 11, pp. 523–528.

    Google Scholar 

  16. Knyazev, V.D., J. Phys. Chem. A, 2007, vol. 111, no. 19, pp. 3875–3883.

    Article  CAS  Google Scholar 

  17. Popov, K.V. and Knyazev, V.D., J. Phys. Chem. A, 2014, vol. 118, pp. 2187–2195.

    Article  CAS  Google Scholar 

  18. Westerhout, R.W.J., Waanders, J., Kuipers, J.A.M., and van Swaaij, W.P.M., Ind. Eng. Chem. Res., 1997, vol. 36, no. 6, pp. 1955–1964.

    Article  CAS  Google Scholar 

  19. Gaca, P., Drzewiecka, M., Kaleta, W., et al., Pol. J. Environ. Stud., 2008, vol. 17, no. 1, pp. 25–31.

    CAS  Google Scholar 

  20. Fernandes, V.J., Araujo, A.S., and Fernandes, G.J.T., J. Therm. Anal., 1997, vol. 49, no. 1, pp. 255–260.

    Article  CAS  Google Scholar 

  21. Sojak, L., Kubinec, R., Jurdakova, H., and Bajus, M., Petrol. Coal, 2006, vol. 48, no. 1, pp. 1–14.

    CAS  Google Scholar 

  22. Iida, T.A., Honda, K., and Nozaki, H., Bull. Chem. Soc. Jpn., 1973, vol. 46, no. 5, pp. 1480–1482.

    Article  CAS  Google Scholar 

  23. Bruns, M.C. and Ezekoye, O.A., J. Anal. Appl. Pyrol., 2014, vol. 105, pp. 241–251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Koptelov.

Additional information

Original Russian Text © A.A. Koptelov, I.A. Koptelov, A.A. Rogozina, E.S. Yushkov, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 9, pp. 1163−1169.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koptelov, A.A., Koptelov, I.A., Rogozina, A.A. et al. Potential of thermal analysis as applied to studying the kinetics of thermal degradation of polymers. Russ J Appl Chem 89, 1454–1460 (2016). https://doi.org/10.1134/S1070427216090111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216090111

Navigation