Skip to main content
Log in

Effect of the initial state of carbon nanotubes on their ability to be dispersed in polar solvents upon liquid-phase oxidative treatments

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Effect of the structural defectiveness of carbon nanotubes on the influence exerted on these nanotubes by their liquid-phase treatments with oxidizing agents (hydrogen peroxide, concentrated nitric acid, and its mixture with sulfuric acid) was studied. It was found that this factor affects changes in the structure of oxidized carbon nanotubes, their hydrophilicity, high-quality arrays of these tubes, and their ability to form stable dispersions in water, ethanol, isopropanol, and acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanovskii, A.L., Russ. Chem. Rev., 1999, vol. 68, no. 2, pp. 103–118.

    Article  CAS  Google Scholar 

  2. Rakov, E.G., Russ. Chem. Rev., 2001, vol. 70, no. 10, pp. 827–863.

    Article  CAS  Google Scholar 

  3. Peng-Xiang Hou, Chang Liu, and Hui-Ming Cheng, Carbon, 2008, vol. 46, pp. 2003–2025.

    Article  CAS  Google Scholar 

  4. Feng Wei, Zhou Feng, Wang Xiao-Gong, et al., Chim. Phys. Lett., 2003, vol. 20, no. 5, pp. 753–755.

    Article  Google Scholar 

  5. Zujin Shi, Yongfu Lian, Xihuang Zhou, et al., Chem. Commun., 2000, pp. 461–482.

    Google Scholar 

  6. Shulitskii, B.G., Tabulina, L.B., Rusal’skaya, T.G., et al., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 10, pp. 1699–1705.

    Article  CAS  Google Scholar 

  7. BY Patent 17246.

  8. BY Patent 17247.

  9. Labunov, V.A., Basaev, A.S., Shulitski, B.G., et al., Nanosc. Res. Let., 2012, vol. 107, pp. 1–8.

    Google Scholar 

  10. Kastner, J., Pichler, T., Kuzmany, H., et al., Chem. Phys. Lett., 1994, vol. 221, pp. 53–58.

    Article  CAS  Google Scholar 

  11. Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., et al., Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 1276–1291.

    Article  CAS  Google Scholar 

  12. Hui Hu, Bin Zhao, Mikhail E. Itkis, et al., J. Phys. Chem. B, 2003, vol. 107, pp. 13838–13842.

    Article  CAS  Google Scholar 

  13. Zavilopulo, A.N., Mikita, M.I., and Shpenik, O.B., Zh. Tech. Fiz., 2012, vol. 82, no. 7, pp. 30–37.

    Google Scholar 

  14. Gallego, J., Batiot-Dupeyat, C., and Mondragon, F., J. Therm. Anal. Calorim., 2013, vol. 114, pp. 597–602.

    Article  CAS  Google Scholar 

  15. Monthioux, M., Smith, B.W., Burteaux, B., et al., Carbon, 2001, vol. 39, pp. 1251–1272.

    Article  CAS  Google Scholar 

  16. Journet, C., Maser, W.K., Barnier, P., et al., Nature, 1997, vol. 38821, pp. 756–758.

    Google Scholar 

  17. Dalip K. Singh, Iyer, P.K., and Giri, P.K., Diamond Related Materials, 2010, vol. 19, pp. 1281–1288.

    Article  CAS  Google Scholar 

  18. Dresselhaus, M.S., Dresselhaus, G., and Jorio, A., Carbon, 2002, vol. 40, pp. 2043–2061.

    Article  CAS  Google Scholar 

  19. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Concise Chemical Handbook), Leningrad: Khimiya, 1978.

    Google Scholar 

  20. Kalugina, N.P., Glebovskaya, E.A., Babiev, F.R., et al., Infrakrasnaya spektroskopiya neftei i kondensatov (IR Spectroscopy of Oils and Condensates), Ashkhabad, 1990.

    Google Scholar 

  21. Uglyanskaya, V.A., Chikin, G.A., Selemenev, V.F., et al., Infrakrasnaya spektroskopiya ionoobmennykh materialov (IR Spectroscopy of Ion-Exchange Materials), Voronezh: Voronezh. Univ., 1989.

    Google Scholar 

  22. Plyusnina, I.I., Infrakrasnye spektry mineralov (IR Spectra of Minerals), Moscow: Mosk. Gos. Univ., 1977.

    Google Scholar 

  23. Mawhinney, D.B., Naumenko, V., Kuznetsova, A., et al., J. Am. Chem. Soc., 2000, vol. 122, pp. 2383–2384.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Komissarov.

Additional information

Original Russian Text © L.V. Tabulina, I.V. Komissarov, T.G. Rusal’skaya, B.G. Shulitskii, I.L. Baranov, A.G. Karoza, A.S. Egorov, 2014, published in Zhurnal Prikladnoi Khimii, 2014, Vol. 87, No. 1, pp. 100–109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabulina, L.V., Komissarov, I.V., Rusal’skaya, T.G. et al. Effect of the initial state of carbon nanotubes on their ability to be dispersed in polar solvents upon liquid-phase oxidative treatments. Russ J Appl Chem 87, 95–103 (2014). https://doi.org/10.1134/S1070427214010145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214010145

Keywords

Navigation