Skip to main content
Log in

New Approaches to Chiral Separation by Means of Capillary Electrophoresis (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The ease of varying the conditions of electrophoretic separation and the possibility of using a wide variety of chiral selectors make the capillary electrophoresis method a promising alternative to high-performance liquid chromatography for the separation of racemic drugs. This review summarizes the main directions of development of electrophoretic methods for enantiomeric analysis of biologically active compounds, including the use of various modifiers of the quartz capillary walls and background electrolyte (cyclodextrins, nanoparticles, ionic liquids, etc.), formation of multilayer coatings, and combining of enantiomeric analysis with online derivatization and preconcentration of analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Kartsova, L.A., Makeeva, D.V., and Bessonova, E.A., J. Anal. Chem., 2020, vol. 75, no. 12, p. 1497. https://doi.org/10.1134/S1061934820120084

    Article  CAS  Google Scholar 

  2. Bernardo-Bermejo, S., Sánchez-López, E., CastroPuyana, M., and Marina, M.L., Trends Anal. Chem., 2020, vol. 124, p. 115807 https://doi.org/10.1016/j.trac.2020.115807

    Article  CAS  Google Scholar 

  3. Fanali, S. and Chankvetadze, B., Electrophoresis, 2019, vol. 40, nos. 18–19, p. 2420. https://doi.org/10.1002/elps.201900144

    Article  CAS  PubMed  Google Scholar 

  4. Vespalec, R. and Bocek, P., Chem. Rev., 2000, vol. 100, p. 3715. https://doi.org/10.1021/cr9411583

    Article  CAS  PubMed  Google Scholar 

  5. Kartsova, L.A., Makeeva, D.V., and Davankov, V.A., Trends Anal. Chem., 2019, vol. 120. 115656. https://doi.org/10.1016/j.trac.2019.115656

  6. Zhang, Q., Xue, S., Li, A., and Ren, S., Coord. Chem. Rev., 2021, vol. 445, p. 214108. https://doi.org/10.1016/j.ccr.2021.214108

    Article  CAS  Google Scholar 

  7. Fejős, I., Kalydi, E., Malanga, M., Benkovics, G., and Béni, S., J. Chromatogr. A, 2020, vol. 1627, p. 461375. https://doi.org/10.1016/j.chroma.2020.461375

    Article  CAS  PubMed  Google Scholar 

  8. Saz, J.M. and Marina, M.L., J. Chromatogr. A, 2016, vol. 1467, p. 79. https://doi.org/10.1016/j.chroma.2016.08.029

    Article  CAS  PubMed  Google Scholar 

  9. Řezanka, P., Navrátilová, K., Řezanka, M., Král, V., and Sýkora, D., Electrophoresis, 2014, vol. 35, no. 19, p. 2701. https://doi.org/10.1002/elps.201400145

    Article  CAS  PubMed  Google Scholar 

  10. Guo, C. and Xiao, Y., Carbohydr. Polym., 2021, vol. 256, p. 117517. https://doi.org/10.1016/j.carbpol.2020.117517

    Article  CAS  PubMed  Google Scholar 

  11. Xiao, Y., Wang, Y., Ong, T.-T., Ge, L., Tan, S.N., Young, D.J., Tan, T.T.Y., and Ng, S.-C., J. Sep. Sci., 2010, vol. 33, no. 12, p. 1797. https://doi.org/10.1002/jssc.200900732

    Article  CAS  PubMed  Google Scholar 

  12. Liu, P., He, W., Qin, X.-Y., Chen, H., and Zhang, S.-Y., Chirality, 2011, vol. 22, p. 914. https://doi.org/10.1002/chir.20859

    Article  CAS  Google Scholar 

  13. Dai, Y., Wang, S., Zhou, J., Liu, Y., Sun, D., Tang, J., and Tang, W., J. Chromatogr. A, 2012, vol. 246, p. 98. https://doi.org/10.1016/j.chroma.2012.02.065

    Article  CAS  Google Scholar 

  14. Rousseau, A., Chiap, P., Ivanyi, R., Crommen, J., Fillet, M., and Servais, A.C., J. Chromatogr. A, 2008, vol. 1204, no. 2, p. 219. https://doi.org/10.1016/j.chroma.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  15. Galaverna, G., Paganuzzi, M.C., Corradini, R., Dossena, A., and Marchelli, R., Electrophoresis, 2001, vol. 22, no. 15, p. 3171. https://doi.org/10.1002/1522-2683(200109)22:

    Article  CAS  PubMed  Google Scholar 

  16. Wang, S., Wang, Y., Zhou, J., Lu, Y., Tang, J., and Tang, W., J. Sep. Sci., 2014, vol. 37, no. 15, p. 2056. https://doi.org/10.1002/jssc.201400248

    Article  CAS  PubMed  Google Scholar 

  17. Ma, X., Cao, J., Yu, J., and Cai, L., J. Mol. Liq., 2022, vol. 362, p. 119782. https://doi.org/10.1016/j.molliq.2022.119782

    Article  CAS  Google Scholar 

  18. Ong, T.T., Tang, W., Muderawan, W., Ng, S.C., and Chan, H.S.O., Electrophoresis, 2005, vol. 26, no. 20, p. 3839. https://doi.org/10.1002/elps.200500189

    Article  CAS  PubMed  Google Scholar 

  19. Tang, W., Ong, T.T., and Ng, S.C., J. Sep. Sci., 2007, vol. 30, no. 9, p. 1343. https://doi.org/10.1002/jssc.200600461

    Article  PubMed  Google Scholar 

  20. Hancu, G., Papp L., A., Tóth, G., and Kelemen, H., Molecules, 2021, vol. 26, no. 8. https://doi.org/10.3390/molecules26082261

  21. Nishi, H., Nakamura, K., Nakai, H., and Sato, T., J. Chromatogr. A, 1994, vol. 678, p. 333. https://doi.org/10.1016/0021-9673(94)80481-8

    Article  CAS  Google Scholar 

  22. Otsuka, K. and Terabe, S., J. Chromatogr. A, 2000, vol. 875, p. 163. https://doi.org/10.1016/S0021-9673(99)01167-X

    Article  CAS  PubMed  Google Scholar 

  23. Dobashi, A., Ono, T., and Hara, S., J. Am. Chem. Soc., 1989, vol. 61, p. 1986. https://doi.org/10.1021/ac00192a043

    Article  Google Scholar 

  24. Rageh, A.H. and Pyell, U., J. Chromatogr. A, 2013, vol. 1316, p. 135. https://doi.org/10.1016/j.chroma.2013.09.079

    Article  CAS  PubMed  Google Scholar 

  25. Kaczmarczyk, N., Cizewska, J., Treder, N., Miekus, N., Plenis, A., Kowalski, P., Roszkowska, A., Tomasz, B., and Oledzka, I., Talanta, 2022, vol. 238, no. 1, p. 122997. https://doi.org/10.1016/j.talanta.2021.122997

    Article  CAS  PubMed  Google Scholar 

  26. Borissova, M., Palk, K., and Koel, M., J. Chromatogr. A, 2008, vol. 1183, p. 192. https://doi.org/10.1016/j.chroma.2007.12.077

    Article  CAS  PubMed  Google Scholar 

  27. Kolobova, E., Kartsova, L., Kravchenko, A., and Bessonova, E., Talanta, 2018, vol. 188, p. 183. https://doi.org/10.1016/j.talanta.2018.05.057

    Article  CAS  PubMed  Google Scholar 

  28. Branco, C., Morais, C., and Lu, A., Electrophoresis, 2012, vol. 33, p. 1182. https://doi.org/10.1002/elps.201100486

    Article  CAS  PubMed  Google Scholar 

  29. Greño, M., Marina, M.L., and Castro-Puyana, M., Crit. Rev. Anal. Chem., 2018, vol. 48, no. 6, p. 429. https://doi.org/10.1080/10408347.2018.1439365

    Article  CAS  PubMed  Google Scholar 

  30. Xu, H., Du, Y., Feng, Z., Sun X, and Liu, J., J. Chromatogr. A, 2020, vol. 1615, p. 460721. https://doi.org/10.1016/j.chroma.2019.460721

    Article  CAS  PubMed  Google Scholar 

  31. Stavrou, I.J. and Kapnissi-Christodoulou, C.P., Electrophoresis, 2013, vol. 34, no. 4, p. 524. https://doi.org/10.1002/elps.201200469

    Article  CAS  PubMed  Google Scholar 

  32. Kolobova, E.A., Kartsova, L.A., Bessonova, E.A., and Kravchenko, A.V., Analytics and Control, 2017, vol. 21, no. 1, p. 57. https://doi.org/10.15826/analitika.2017.21.1.006

    Article  Google Scholar 

  33. Bessonova, E., Kartsova, L., and Gallyamova, V., J. Sep. Sci., 2017, vol. 40, no. 10, p. 2304. https://doi.org/10.1002/jssc.,

    Article  CAS  PubMed  Google Scholar 

  34. Kartsova, L.A., Kravchenko, A.V., and Kolobova, E.A., J. Anal. Chem., 2019, vol. 74, no. 8, p. 729. https://doi.org/10.1134/S1061934819080100

    Article  CAS  Google Scholar 

  35. Kravchenko, A., Kolobova, E., and Kartsova, L., Sep. Sci. Plus., 2020, vol. 3, no. 4, p. 102. https://doi.org/10.1002/sscp.201900098

    Article  CAS  Google Scholar 

  36. Kartsova, L.A. and Kravchenko, A.V., J. Anal. Chem., 2021, vol. 76, p. 1043. https://doi.org/10.1134/S1061934821090069

    Article  Google Scholar 

  37. Kartsova, L., Moskvichev, D., Bessonova, E., and Peshkova, M., Chromatograph., 2020, vol. 83, no. 8, p. 1001. https://doi.org/10.1007/s10337-020-03921-z

    Article  CAS  Google Scholar 

  38. Kartsova, L.A., Bessonova, E.A., and Moskvichev, D.O., J. Anal. Chem., 2021, vol. 76, no. 10, p. 1111. https://doi.org/10.1134/S1061934821100038

    Article  Google Scholar 

  39. Zhang, Q., Trends Anal. Chem., 2018, vol. 100, p. 145. https://doi.org/10.1016/j.trac.2018.01.001

    Article  CAS  Google Scholar 

  40. Salido-Fortuna, S., Greño, M., Castro-Puyana, M., and Marina, M.L., J. Chromatogr. A, 2019, vol. 1607, p. 460375. https://doi.org/10.1016/j.chroma.2019.460375

    Article  CAS  PubMed  Google Scholar 

  41. Franc, Y., Varenne, A., Juillerat, E., Villemin, D., and Gareil, P., J. Chromatogr. A, 2007, vol. 1155, p. 134. https://doi.org/10.1016/j.chroma.2006.12.076

    Article  CAS  Google Scholar 

  42. Kolobova, E.A., Kartsova, L.A., Alopina, E.V., and Smirnova, N.A., Analit. Control, 2018, vol. 22, no. 1, p. 51. https://doi.org/10.15826/analitika.2018.22.1.004

    Article  Google Scholar 

  43. Mwongela, S.M., Numan, A., Gill, N.L., Agbaria, R.A., and Warner, I.M., Anal. Chem., 2003, vol. 75, no. 22, p. 6089. https://doi.org/10.1021/ac034386i

    Article  CAS  PubMed  Google Scholar 

  44. Tang, S., Liu, S., Guo, Y., Liu, X., and Jiang, S., J. Chromatogr. A, 2014, vol. 1357, p. 147. https://doi.org/10.1016/j.chroma.2014.04.037

    Article  CAS  PubMed  Google Scholar 

  45. Li, J., Han, H., Wang, Q., Liu, X., and Jiang, S., Anal. Chem. Acta, 2010, vol. 674, p. 243. https://doi.org/10.1016/j.aca.2010.06.044

    Article  CAS  Google Scholar 

  46. Li, J., Han, H., Wang, Q., Liu, X., and Jiang, S., J. Sep. Sci., 2010, vol. 33, p. 2804. https://doi.org/10.1002/jssc.201000211

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, Y., Li, J., Han, H., Liu, X., and Jian, S., Chem. Pap., 2011, vol. 65, p. 267. https://doi.org/10.2478/s11696-011-0014-5

    Article  CAS  Google Scholar 

  48. Rizvi, S.A.A. and Shamsi, S.A., Anal. Chem., 2006, vol. 78, p. 7061. https://doi.org/10.1021/ac060878u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Q., Zhang, J., Xue, S., Rui, M., Gao, B., Li, A., Bai, J., Yin, Z., and Anochie, E.M., J. Sep. Sci., 2018, vol. 41, no. 24, p. 4525. https://doi.org/10.1002/jssc.201800792

    Article  CAS  PubMed  Google Scholar 

  50. Ren, S., Xue, S., Sun, X., Rui, M., Wang, L., and Zhang, Q., J. Chromatogr. A, 2020, vol. 1609, no. 1609, p. 460519. https://doi.org/10.1016/j.chroma.2019.460519

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Q., Qi, X., Feng, C., Tong, S., and Rui, M., J. Chromatogr. A, 2016, vol. 1462, p. 146. https://doi.org/10.1016/j.chroma.2016.07.066

    Article  CAS  PubMed  Google Scholar 

  52. Salido-Fortuna, S., Marina, M.L., and CastroPuyana, M., J. Chromatogr. A, 2020, vol. 1621. https://doi.org/10.1016/j.chroma.2020.461085

  53. Wang, Z., Guo, H., Chen, M., Zhang, G., Chang, R., and Chen, A., Electrophoresis, 2018, vol. 3, no. 17, p. 2195. https://doi.org/10.1002/elps.201800129

    Article  CAS  Google Scholar 

  54. Ma, X., Du, Y., Sun, X., Liu, J., and Huang, Z., J. Chromatogr. A, 2019, vol. 1601, p. 340. https://doi.org/10.1016/j.chroma.2019.04.040

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Y., Du, S., Feng, Z., Du, Y., Yan, Z., Anal. Bioanal. Chem., 2016, vol. 408, no. 10, p. 2543. https://doi.org/10.1007/s00216-016-9356-8

    Article  CAS  PubMed  Google Scholar 

  56. Greño, M., Castro-Puyana, M., and Marina, M.L., Microchem. J., 2020, vol. 157, p. 105070. https://doi.org/10.1016/j.microc.2020.105070

    Article  CAS  Google Scholar 

  57. Yang, X., Du, Y., Feng, Z., Liu, Z., and Li, J., J. Chromatogr. A, 2018, vol. 1559, p. 170. https://doi.org/10.1016/j.chroma.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y., Du, Y., Yu, T., Feng, Z., and Chen, J., J. Pharm. Biomed. Anal., 2019, vol. 164, p. 413. https://doi.org/10.1016/j.jpba.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  59. Kravchenko, A., Kolobova, E., and Kartsova, L., Monatsh Chem., 2021, vol. 152, p. 1067. https://doi.org/10.1007/s00706-021-02809-4

    Article  CAS  Google Scholar 

  60. Kravchenko, A.V., Kolobova, E.A., Kechin, A.A., and Kartsova, L.A., J. Sep. Sci., 2023, vol. 46, no. 2, p. 2200601. https://doi.org/10.1002/jssc.202200601

    Article  CAS  Google Scholar 

  61. Naghdi, E. and Fakhari, A.R., Chirality, 2018, vol. 30, p. 1161. https://doi.org/10.1002/chir.23008

    Article  CAS  PubMed  Google Scholar 

  62. Kuntip, N., Japrung, D., and Pongprayoon, P., Biopolymer., 2021, vol. 112, p. 23421. https://doi.org/10.1002/bip.23421

    Article  CAS  Google Scholar 

  63. Ye, N., Gu, X., and Luo, G., J. Chromatogr. Sci., 2007, vol. 5, p. 246. https://doi.org/10.1093/chromsci/45.5.246

    Article  Google Scholar 

  64. Chen, J.L. and Hsieh, K.H., Electrophoresis, 2011, vol. 32, p. 398. https://doi.org/10.1002/elps.201000410

    Article  CAS  PubMed  Google Scholar 

  65. Wang, D., Song, X., Duan, Y., Xu, L., Zhou, J., and Duan, H., Electrophoresis, 2013, vol. 34, p. 1339. https://doi.org/10.1002/elps.201200672

    Article  CAS  PubMed  Google Scholar 

  66. Liang, R.P., Wang, X.N., Liu, C.M., Meng, X.Y., and Qiu, J.D., J. Chromatogr. A, 2014, vol. 1323, p. 135. https://doi.org/10.1016/j.chroma.2013.11.048

    Article  CAS  PubMed  Google Scholar 

  67. Liu, C., Zhang, J., Zhang, X., Zhao, X., and Li, S., Mikrochim Acta, 2018, vol. 185, no. 4, p. 227. https://doi.org/10.1007/s00604-018-2758-x

    Article  CAS  PubMed  Google Scholar 

  68. Makeeva, D.V., Antipova, K.S., Solovyeva, E.V., Morgacheva, V.P., Kolobova, E.A., and Kartsova, L.A., J. Anal. Chem., 2023, vol. 78, no. 3, p. 416. https://doi.org/10.1134/S1061934823030085

    Article  Google Scholar 

  69. Rmaile, H.H. and Schlenoff, J.B., J. Am. Chem. Soc., 2003, vol. 125, p. 6602. https://doi.org/10.1021/ja035251x

    Article  CAS  PubMed  Google Scholar 

  70. Kamande, M.W., Zhu, X., Kapnissi-Christodoulou, C., and Warner, I.M., Anal. Chem., 2004, vol. 76, no. 22, p. 6681. https://doi.org/10.1021/ac049313t

    Article  CAS  PubMed  Google Scholar 

  71. Yang, J. and Hage, D.S., Anal. Chem., 1994, vol. 66, p. 2719. https://doi.org/10.1021/ac00089a019

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Y., Zhang, Y., Chen, W., Zhang, Y., Zhu, L., He, P., and Wang, Q., Anal. Methods, 2017, vol. 9, p. 3561. https://doi.org/10.1039/C7AY01035D

    Article  CAS  Google Scholar 

  73. Zhou, L., Zhang, B., Li, S., Yu, J., and Guo, X., New J. Chem., 2018, vol. 42, p. 17250. https://doi.org/10.1039/C8NJ03234C

    Article  CAS  Google Scholar 

  74. Lu, J., Ye, F., Zhang, A., Wei, Z., Peng, Y., and Zhao, S., J. Sep. Sci., 2011, vol. 34, p. 2329. https://doi.org/10.1002/jssc.201100102

    Article  CAS  PubMed  Google Scholar 

  75. Xiong L, Li, R., Ji, Y., and Se, P., Chinese J. Chromatograph., 2017, vol. 35, p. 712. https://doi.org/10.3724/SP.J.1123.2017.03019

    Article  CAS  Google Scholar 

  76. Morgacheva, V.P., Makeeva, D.V., Solovyeva, E.V., Kolobova, E.A., and Kartsova, L.A., Analit. Control, 2023, vol. 27, no. 1. https://doi.org/10.15826/analitika.2023.27.1.00X

  77. Fu, Q., Zhang, K., Gao, D., Wang, L., Yang, F., Liu, Y., and Xia, Z., Anal. Chim. Acta, 2017, vol. 969, p. 63. https://doi.org/10.1016/j.aca.2017.03.036

    Article  CAS  PubMed  Google Scholar 

  78. Li, L., Xia, Z., Yang, F., Chen, H., and Zhang, Y., J. Sep. Sci., 2012, vol. 35, p. 2101. https://doi.org/10.1002/jssc.201200315

    Article  CAS  PubMed  Google Scholar 

  79. Simpson, S.L., Quirino, J.P., and Terabe, S., J. Chromatogr. A, 2008, vol. 1184, p. 504. https://doi.org/10.1016/j.chroma.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  80. Kartsova, L.A., Problemy analiticheskoi khimii (Problems of Analytical Chemistry), Moscow: Nauka, 2014, p. 4368.

  81. Mikuma, T., Iwata, Y.T., Miyaguchi, H., Kuwayama, K., Tsujikawa, K., Kanamori, T., Kanazawa, H., and Inoue, H., Electrophoresis, 2016, vol. 37, no. 22, p. 2970. https://doi.org/10.1002/elps.201600324

    Article  CAS  PubMed  Google Scholar 

  82. Wang, W., Zhang, H., Qi, S., Chen, H., and Chen, X., Analyst., 2015, vol. 12, p. 4253. https://doi.org/10.1039/c5an00283d

    Article  Google Scholar 

  83. Ptolemy, A.S., Tran, L., and Britz-McKibbin, P., Anal. Biochem., 2006, vol. 354, p. 192. https://doi.org/10.1016/j.ab.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  84. Kartsova, L.A. and Moskvichev, D.O., J. Anal. Chem., 2022, vol. 77, p. 618. https://doi.org/10.1134/S1061934822050057

    Article  Google Scholar 

  85. Oliveira, R., Simionato, V.A.C., and Cass, B., Molecules, 2021, vol. 26, p. 5231. https://doi.org/10.3390/molecules26175231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tanwar, S. and Bhushan, R., Chromatograph.., 2015, vol. 78, p. 1113. https://doi.org/10.1007/s10337-015-2933-8

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (grant no. 19-13-00370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kartsova.

Ethics declarations

Authors declare that they have no conflicts of interest.

Additional information

To the 300th Anniversary of the founding of St. Petersburg University

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartsova, L.A., Makeeva, D.V., Kravchenko, A.V. et al. New Approaches to Chiral Separation by Means of Capillary Electrophoresis (A Review). Russ J Gen Chem 94 (Suppl 1), S193–S204 (2024). https://doi.org/10.1134/S1070363224140202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224140202

Keywords:

Navigation