Skip to main content
Log in

Structure and Antiradical Activity of Hydrogen-Bound Complexes of Protocatechoic Acid with Monosaccharides in Aqueous Media

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

It was found by the photocolorimetry method that binary compositions of protocatechic acid with monosaccharides (galactose, mannose) exhibit a pronounced antiradical synergistic effect in reaction with 2,2ʹ-diphenyl-1-picrylhydrazyl in acidic media. The synergistic properties of phenol-saccharide mixtures decrease with increasing pH of the medium. Using NMR spectroscopy and density functional theory, it was shown that the mechanism of synergism consists in the formation of intermolecular hydrogen–bonded phenol-monosaccharide complexes. The ionization energies of the donor and donor-acceptor complexes are lower than those of protocatechuic acid and hence the complexes react more actively with the radical compared to the initial antioxidant. Acceptor ion-molecular complexes with ionization energies higher than those of the reagents are less reactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Liao, X., Brock, A.A., Jackson, B.T., Greenspan, P., and Pegga, R.B., Food Chem., 2020, vol. 316. Article 126234. https://doi.org/10.1016/j.foodchem.2020.126234

  2. Basu, P. and Basu, A., Molecules, 2020, vol. 25. Article 1171. https://doi.org/10.3390/molecules25051171

  3. Pérez-González, A., Galano, A., and AlvarezIdaboy, J.R., New J. Chem., 2014, vol. 38, p. 2639. https://doi.org/10.1039/C4NJ00071D

    Article  Google Scholar 

  4. Mirela, K., Ante, L., Zaklina, S., Mihaela, S., and Anita, P., Nat. Prod. Commun., 2016, vol. 11, no. 6, p. 1445. https://doi.org/10.1177/1934578X1601101008

    Article  Google Scholar 

  5. Renato, B., Carla, S., Andreia, C., Paula, B., and Patrícia, V., Molecules, 2013, vol. 18, p. 8858. https://doi.org/10.3390/molecules18088858

    Article  CAS  Google Scholar 

  6. Doert, M., Jaworska, K., Moersel, J., and Kroh, L., Eur. Food Res. Technol., 2012, vol. 235, p. 915. https://doi.org/10.1007/s00217-012-1815-7

    Article  CAS  Google Scholar 

  7. Wagner, H. and Ulrich-Merzenich, G., Phytomedicine, 2009, vol. 16, nos. 2–3, p. 97. https://doi.org/10.1016/j.phymed.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  8. Belaya, N.I., Belyi, A.V., Tikhonova, G.A., Udalov, Ya.S., and Andrienko, G.O., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2019, vol. 62, no. 2, p. 38. https://doi.org/10.6060/ivkkt.20196202.5822

    Article  CAS  Google Scholar 

  9. Belaya, N.I., Belyi, A.V., Tikhonova, G.A., and Udalov, Ya.S., Khim. Rast. Syr’ya, 2020, no. 3, p. 57. https://doi.org/10.14258/jcprm.2020036631

    Article  CAS  Google Scholar 

  10. Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J.R., and Russo, N., Annu. Rev. Food Sci. Technol., 2016, vol. 7, p. 335. https://doi.org/10.1146/annurev-food-041715-033206

    Article  CAS  PubMed  Google Scholar 

  11. Milenković, D., Yorović, J., Jeremić, S., Marković, J.M.D., Avdović, E.H., and Marković, Z., J. Chem., 2017, vol. 6, p. 1. https://doi.org/10.1155/2017/5936239

    Article  CAS  Google Scholar 

  12. Limbach, H.H., Tolstoy, P.M., Pérez-Hernández, N., Guo, J., Shenderovich, I.G., and Denisov, G.S., Isr. J. Chem., 2009, vol. 49, no. 2, p. 199. https://doi.org/10.1560/IJC.49.2.199

    Article  CAS  Google Scholar 

  13. Database on Carbohydrate Structures (CSDB). http://csdb.glycoscience.ru

  14. Lu, T., Molclus Program, version 1.9.9.9. http://www.keinsci.com/research/molclus.html

  15. Stewart, J.J.P., MOPAC, 2016, Stewart Computational Chemistry; Colorado Springs, CO, USA. http://OpenMOPAC.net

  16. Korth, M., J. Chem. Theory Comput., 2010, vol. 6, no. 12, p. 3808. https://doi.org/10.1021/ct100408b

    Article  CAS  Google Scholar 

  17. Arunan, E., Desiraju, G.R., Klein, R.A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D.C., Crabtree, R.H., Dannenberg, J.J., Hobza, P., Kjaergaard, H.G., Legon, A.C., Mennucci, B., and Nesbitt, D.J., Pure Appl. Chem., 2011, vol. 83, no. 8, p. 1637. https://doi.org/10.1351/PAC-REC-10-01-02

    Article  CAS  Google Scholar 

  18. Samuilov, A.Y., Nesterov, S.V., Balabanova, F.B., Samuilov, Y.D., and Konovalov, A.I., Russ. J. Org. Chem., 2014, vol. 50, no. 2, p. 155. https://doi.org/10.1134/S1070428014020018

    Article  CAS  Google Scholar 

  19. Yamabe, S. and Yamazaki, S., Int. J. Quantum Chem., 2017, vol. 118, no. 6, p. 1. https://doi.org/10.1002/qua.25510

    Article  CAS  Google Scholar 

  20. Bader, R.F.W., Atoms in Molecules: A Quantum Theory, Oxford: Clarendon Press, 1990.

  21. Koch, U. and Popelier, P.L.A., J. Chem. Phys., 1995, vol. 99, no. 24, p. 9747. https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  22. Espinosa, E., Alkorta, I., Elguero, J., and Molins, E., J. Chem. Phys., 2002, vol. 117, no. 12, p. 5529. https://doi.org/10.1063/1.1501133

    Article  CAS  Google Scholar 

  23. Grabowski, S.J., Annu. Rep. Prog. Chem., 2006, vol. 102, p. 131. https://doi.org/10.1039/B417200K

    Article  CAS  Google Scholar 

  24. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, p. 170. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  25. Emamian, S., Lu, T., Kruse, H., and Emamian, H., J. Comput. Chem., 2019, vol. 40, no. 32, p. 2868. https://doi.org/10.1002/jcc.26068

    Article  CAS  PubMed  Google Scholar 

  26. Lu, T. and Chen, Q., J. Comput Chem., 2022, vol. 43, no. 8, p. 539. https://doi.org/10.1002/jcc.26812

    Article  CAS  PubMed  Google Scholar 

  27. NIST Chemistry WebBook, Standard Reference Database Number 69. https://doi.org/10.18434/T4D303

  28. Marvin 22.7. ChemAxon. https://www.chemaxon.com

  29. Ho, J. and Ertem, M.Z., J. Phys. Chem. B, 2016, vol. 120, no. 7, p. 1319. https://doi.org/10.1021/acs.jpcb.6b00164

    Article  CAS  PubMed  Google Scholar 

  30. Chen, C., Li, W.Z., Song, Y.C., Wenig, L.D., and Zhang, N., Bull. Korean Chem. Soc., 2012, vol. 33, no. 7, p. 2238. https://doi.org/10.5012/bkcs.2012.33.7.2238

    Article  CAS  Google Scholar 

  31. Kedare, S.B. and Singh, R.P., J. Food Sci. Technol., 2011, vol. 48, no. 4, p. 412. https://doi.org/10.1007/s13197-011-0251-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neese, F., Wennmohs, F., Becker, U., and Riplinger, C., J. Chem. Phys., 2020, vol. 152, p. 1. https://doi.org/10.1063/5.0004608

    Article  CAS  Google Scholar 

  33. Grimme, S., Hansen, A., Ehlert, S., and Mewes, J.M., J. Chem. Phys., 2021, vol. 154, no. 6, p. 1. https://doi.org/10.1063/5.0040021

    Article  CAS  Google Scholar 

  34. Furness, J.W., Kaplan, A.D., Ning, J., Perdew, J.P., and Sun, J., J. Phys. Chem. Lett., 2020, vol. 11, no. 19, p. 8208. https://doi.org/10.1021/acs.jpclett.0c02405

    Article  CAS  PubMed  Google Scholar 

  35. Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3297. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  36. Kruse, H. and Grimme, S., J. Chem. Phys., 2012, vol. 136, no. 15, p. 1. https://doi.org/10.1063/1.3700154

    Article  CAS  Google Scholar 

  37. Caldeweyher, E., Ehlert, S., Hansen, A., Neugebauer, H., Spicher, S., Bannwarth, C., and Grimme, S., J. Chem. Phys., 2019, vol. 150, p. 1. https://doi.org/10.1063/1.5090222

    Article  CAS  Google Scholar 

  38. Ehlert, S., Huniar, U., Ning, J., Furness, J.W., Sun, J., Kaplan, A.D., Perdew, J.P., and Brandenburg, J.G., J. Chem. Phys., 2021, vol. 154, no. 6, p. 1. https://doi.org/10.1063/5.0041008

    Article  CAS  Google Scholar 

  39. Goerigk, L., Hansen, A., Bauer, C., Ehrlich, S., Najibi, A., and Grimme, S., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 48, p. 1. https://doi.org/10.1039/C7CP04913G

    Article  Google Scholar 

  40. Ehlert, S., Grimme, S., and Hanson, A., J. Phys. Chem. A, 2022, vol. 126, no. 22, p. 3521. https://doi.org/10.1021/acs.jpca.2c02439

    Article  CAS  PubMed  Google Scholar 

  41. Bursch, M., Mewes, J.-M., Hansen, A., and Grimme, S., Angew. Chem. Int. Ed., 2022, vol. 61, no. 42, p. 1. https://doi.org/10.1002/anie.202205735

    Article  CAS  Google Scholar 

  42. Zheng, J., Xu, X., and Truhlar, D.G., Theor. Chem. Acc., 2011, vol. 128, p. 295. https://doi.org/10.1007/s00214-010-0846-z

    Article  CAS  Google Scholar 

  43. Mardirossian, N., and Head-Gordon, M., J. Chem. Phys., 2016, vol. 144, no. 21, p. 1. https://doi.org/10.1063/1.4952647

    Article  CAS  Google Scholar 

  44. Vydrov, O.A. and Van Voorhis, T., J. Chem. Phys., 2010, vol. 133, no. 24, p. 1. https://doi.org/10.1063/1.3521275

    Article  CAS  Google Scholar 

  45. Goerigk, L. and Mehta, N., Aus. J. Chem., 2019, vol. 72, p. 563. https://doi.org/10.1071/CH19023

    Article  CAS  Google Scholar 

  46. Barone, V. and Cossi, M., J. Phys. Chem. A, 1998, vol. 102, no. 11, p. 1995. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  47. York, D.M. and Karplus, M., J. Phys. Chem. A, 1999, vol. 103, no. 50, p. 11060. https://doi.org/10.1021/jp992097l

  48. Garcia-Ratés, M. and Neese, F., J. Comput. Chem., 2020, vol. 41, p. 922. https://doi.org/10.1002/jcc.26139

    Article  CAS  PubMed  Google Scholar 

  49. Lu, T. and Chen, F., J. Comput. Chem., 2012, vol. 33, p. 580. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  50. Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graphics, 1996, vol. 14, p. 33. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of the Ministry of Education and Science of Russia (topic no. 1023030900018-1-1.4.3)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Belaya.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaya, N.I., Belyi, A.V., Zarechnaya, O.V. et al. Structure and Antiradical Activity of Hydrogen-Bound Complexes of Protocatechoic Acid with Monosaccharides in Aqueous Media. Russ J Gen Chem 94, 93–105 (2024). https://doi.org/10.1134/S1070363224010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224010092

Keywords:

Navigation