Skip to main content
Log in

Oxidation of 4,6-Dimethyl-2-thioxo-1,2-dihydropyridine-3-carbonitriles with Potassium Ferricyanide: Synthesis and Molecular Docking of Bis(pyrid-2-yl) Disulfides

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reaction of 4,6-dimethyl-2-thioxo-1,2-dihydropyridin-3-carbonitriles with K3[Fe(CN)6] in an alkaline medium results in the formation of a mixture of oxidation products: bis(3-cyanopyridin-2-yl) disulfides and potassium 3-cyano-4,6-dimethylpyridine-2-sulfonates. Structure of the compounds was confirmed by NMR, IR spectroscopy and high-resolution mass spectrometry. According to the results of molecular docking studies, 2,2′-dithiobis(5-butyl-4,6-dimethylnicotinonitrile) exhibits affinity to the zinc finger domain of the HIV-1 p7 nucleocapsid protein binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Scheme
Scheme
Scheme
Fig. 2.
Fig. 3.

REFERENCES

  1. Wang, M. and Jiang, X., Sulfur Chemistry. Topics in Current Chemistry Collections, Jiang. X., Ed., Cham: Springer, 2019, vol. 376, ch. 9, p. 285. https://doi.org/10.1007/978-3-030-25598-5_9

  2. Witt, D., Synthesis, 2008, vol. 2008, no. 16, p. 2491. https://doi.org/10.1055/s-2008-1067188

    Article  CAS  Google Scholar 

  3. Musiejuk, M. and Witt, D., Org. Prep. Proced. Int., 2015, vol. 47, no. 2, p. 95. https://doi.org/10.1080/00304948.2015.1005981

    Article  CAS  Google Scholar 

  4. Mandal, B. and Basu, B., RSC Adv., 2014, vol. 4, no. 27, p. 13854. https://doi.org/10.1039/C3RA45997G

    Article  CAS  Google Scholar 

  5. Koval, I.V., Russ. Chem. Rev., 1994, vol. 63, no. 9, p. 735. https://doi.org/10.1070/RC1994v063n09ABEH000115

    Article  Google Scholar 

  6. Gongora-Benitez, M., Tulla-Puche, J., and Albericio, F., Chem. Rev., 2014, vol. 114, no. 2, p. 901. https://doi.org/10.1021/cr400031z

    Article  CAS  PubMed  Google Scholar 

  7. Chiu, J. and Hogg, P.J., J. Biol. Chem., 2019, vol. 294, no. 8, p. 2949. https://doi.org/10.1074/jbc.REV118.005604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito, K. and Inaba, K., Curr. Opin. Struct. Biol., 2008, vol. 18, no. 4, p. 450. https://doi.org/10.1016/j.sbi.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  9. Wedemeyer, W.J., Welker, E., Narayan, M., and Scheraga, H.A., Biochemistry, 2000, vol. 39, no. 15, p. 4207. https://doi.org/10.1021/bi992922o

    Article  CAS  PubMed  Google Scholar 

  10. Mitra, S., Das, R., Emran, T.B., Labib, R.K., Noor E-Tabassum Islam, F., Sharma, R., Ahmad, I., Nainu, F., Chidambaram, K., Alhumaydhi, F.A., Chandran, D., Capasso, R., and Wilairatana, P., Front. Pharmacol., 2022, vol. 13, article 943967. https://doi.org/10.3389/fphar.2022.943967

  11. Tyler, T.J., Durek, T., and Craik, D.J., Molecules, 2023, vol. 28, no. 7, p. 3189. https://doi.org/10.3390/molecules28073189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, R., Nie, T., Fang, Y., Huang, H., and Wu, J., BiomacroMolecules, 2021, vol. 23, no. 1, p. 1. https://doi.org/10.1021/acs.biomac.1c01210

    Article  CAS  PubMed  Google Scholar 

  13. Ding, C., Wu, H., Yin, Z.Z., Gao, J., Wu, D., Qin, Y., and Kong, Y., Mater. Sci. Eng. C, 2020, vol. 107, article 110366. https://doi.org/10.1016/j.msec.2019.110366

  14. Lee, M.H., Yang, Z., Lim, C.W., Lee, Y.H., Dongbang, S., Kang, C., and Kim, J.S., Chem. Rev., 2013, vol. 113, no. 7, p. 5071. https://doi.org/10.1021/cr300358b

    Article  CAS  PubMed  Google Scholar 

  15. Moghadam, F.N., Amirnasr, M., Eskandari, K., and Meghdadi, S., New J. Chem., 2019, vol. 43, no. 34, p. 13536. https://doi.org/10.1039/C9NJ03049B

    Article  Google Scholar 

  16. Shadike, Z., Tan, S., Wang, Q.C., Lin, R., Hu, E., Qu, D., and Yang, X.Q., Mater. Horiz., 2021, vol. 8, no. 2, p. 471. https://doi.org/10.1039/D0MH01364A

    Article  CAS  PubMed  Google Scholar 

  17. Maruyama, K., Nagasawa, H., and Suzuki, A., Peptides, 1999, vol. 20, no. 7, p. 881. https://doi.org/10.1016/s0196-9781(99)00076-5

    Article  CAS  PubMed  Google Scholar 

  18. Mukaiyama, T. and Hashimoto, M., J. Am. Chem. Soc., 1972, vol. 94, no. 24, p. 8528. https://doi.org/10.1021/ja00779a039

    Article  CAS  PubMed  Google Scholar 

  19. Song, J., Si, Y., Guo, W., Wang, D., and Fu, Y., Angew. Chem., 2021, vol. 133, no. 18, p. 9969. https://doi.org/10.1002/anie.202016875

    Article  CAS  Google Scholar 

  20. Wang, D.Y., Si, Y., Li, J., and Fu, Y., J. Mater. Chem. A, 2019, vol. 7, no. 13, p. 7423. https://doi.org/10.1039/C9TA01273G

    Article  CAS  Google Scholar 

  21. Katayama, H. and Nagata, K., J. Pept. Sci., 2021, vol. 27, no. 2, article e3290. https://doi.org/10.1002/psc.3290

  22. Rice, W.G., Turpin, J.A., Schaeffer, C.A., Graham, L., Clanton, D., Buckheit, R.W.Jr, Zaharevitz, D., Summers, M.F., Wallqvist, A., and Covell, D.G., J. Med. Chem., 1996, vol. 39, no. 19, p. 3606. https://doi.org/10.1021/jm960375o

    Article  CAS  PubMed  Google Scholar 

  23. Morad, M.S. and El-Dean Kamal, A.M., Corros. Sci., 2006, vol. 48, no. 11, p. 3398. https://doi.org/10.1016/j.corsci.2005.12.006

    Article  CAS  Google Scholar 

  24. Dotsenko, V.V., Krivokolysko, S.G., Chernega, A.N., and Litvinov, V.P., Russ. Chem. Bull., 2002, vol. 51, no. 8, p. 1556. https://doi.org/10.1023/A:1020939712830

    Article  CAS  Google Scholar 

  25. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Mendeleev Commun., 2004, vol. 14, no. 1, p. 30. https://doi.org/10.1070/MC2004v014n01ABEH001882

    Article  CAS  Google Scholar 

  26. Dotsenko, V.V., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2012, vol. 48, p. 672. https://doi.org/10.1007/s10593-012-1042-y

    Article  CAS  Google Scholar 

  27. Dotsenko, V.V., Bushmarinov, I.S., Goloveshkin, A.S., Chigorina, E.A., Frolov, K.A., and Krivokolysko, S.G., Phosphorus, Sulfur, Silicon, Relat. Elem., 2017, vol. 192, no. 1, p. 47. https://doi.org/10.1080/10426507.2016.1224877

    Article  CAS  Google Scholar 

  28. Dotsenko, V.V., Krivokolysko, S.G., Litvinov, V.P., and Chernega, A.N., Chem. Heterocycl. Compd., 2007, vol. 43, no. 5, p. 599. https://doi.org/10.1007/s10593-007-0094-x

    Article  CAS  Google Scholar 

  29. Cano, M., Ballester, L., and Santos, A., J. Inorg. Nucl. Chem., 1981, vol. 43, no. 1, p. 200. https://doi.org/10.1016/0022-1902(81)80470-8

    Article  CAS  Google Scholar 

  30. Pickardt, J., von Chrzanowski, L., Steudel, R., Borowski, M., and Beck, S., Z. Naturforsch. B, 2005, vol. 60, no. 4, p. 373. https://doi.org/10.1515/znb-2005-0402

    Article  CAS  Google Scholar 

  31. Quirk, J. and Wilkinson, G., Polyhedron, 1982, vol. 1, no. 2, p. 209. https://doi.org/10.1016/S0277-5387(00)80989-4

    Article  CAS  Google Scholar 

  32. Constable, E.C., Housecroft, C.E., Neuburger, M., Price, J.R., and Schaffner, S., Dalton Trans., 2008, no. 29, p. 3795. https://doi.org/10.1039/B809242G

    Article  Google Scholar 

  33. Delgado, S., Barrilero, A., Molina-Ontoria, A., Medina, M.E., Pastor, C.J., Jiménez-Aparicio, R., and Priego, J.L., Eur. J. Inorg. Chem., 2006, vol. 2006, no. 14, p. 2746. https://doi.org/10.1002/ejic.200500960

    Article  CAS  Google Scholar 

  34. Delgado, S., Molina-Ontoria, A., Medina, M.E., Pastor, C.J., Jiménez-Aparicio, R., and Priego, J.L., Polyhedron, 2007, vol. 26, no. 12, p. 2817. https://doi.org/10.1016/j.poly.2007.01.021

    Article  CAS  Google Scholar 

  35. Kinoshita, I., Wright, L.J., Kubo, S., Kimura, K., Sakata, A., Yano, T., Miyamoto, R., Nishioka, T., and Isobe, K., Dalton Trans., 2003, no. 10, p. 1993. https://doi.org/10.1039/B210420M

    Article  Google Scholar 

  36. Kubo, S., Nishioka, T., Ishikawa, K., Kinoshita, I., and Isobe, K., Chem. Lett., 1998, vol. 27, no. 10, p. 1067. https://doi.org/10.1246/cl.1998.1067

    Article  Google Scholar 

  37. Gökce, H. and Bahçeli, S., Spectrochim. Acta A, 2013, vol. 114, p. 61. https://doi.org/10.1016/j.saa.2013.04.112

    Article  CAS  Google Scholar 

  38. Mashima, K., Shibahara, T., Nakayama, Y., and Nakamura, A., J. Organomet. Chem., 1995, vol. 501, nos. 1–2, p. 263. https://doi.org/10.1016/0022-328X(95)05670-K

    Article  CAS  Google Scholar 

  39. Moosun, S., Laulloo, S.J., and Bhowon, M.G., J. Sulfur Chem., 2012, vol. 33, no. 6, p. 661. https://doi.org/10.1080/17415993.2012.719897

    Article  CAS  Google Scholar 

  40. Niu, Y., Zhang, N., Hou, H., Zhu, Y., Tang, M., and Ng, S., J. Mol. Struct., 2007, vol. 827, nos. 1–3, p. 195. https://doi.org/10.1016/j.molstruc.2006.05.029

    Article  CAS  Google Scholar 

  41. Krauze, A.A., Bomika, Z.A., Shestopalov, A.M., Rodinovskaya, L.A., Pelcher, Yu.É., Dubur, G.Ya., Sharanin, Yu.A., and Promonenkov, V.K., Chem. Heterocycl. Compd., 1981, vol. 17, no. 3, p. 279. https://doi.org/10.1007/BF00505994

    Article  Google Scholar 

  42. Litvinov, V.P., Rodinovskaya, L.A., Sharanin, Yu.A., Shestopalov, A.M., and Senning, A., J. Sulfur Chem., 1992, vol. 13, no. 1, p. 1. https://doi.org/10.1080/01961779208048951

    Article  CAS  Google Scholar 

  43. Litvinov, V.P., Phosphorus, Sulfur, Silicon, Relat. Elem., 1993, vol. 74, no. 1, p. 139. https://doi.org/10.1080/10426509308038105

    Article  CAS  Google Scholar 

  44. Litvinov, V.P., Russ. Chem. Bull., 1998, vol. 47, no. 11, p. 2053. https://doi.org/10.1007/BF02494257

    Article  Google Scholar 

  45. Litvinov, V.P., Krivokolysko, S.G., and Dyachenko, V.D., Chem. Heterocycl. Compd., 1999, vol. 35, no. 5, p. 509. https://doi.org/10.1007/BF02324634

    Article  CAS  Google Scholar 

  46. Litvinov, V.P., Russ. Chem. Rev., 2006, vol. 75, no. 7, p. 577. https://doi.org/10.1070/RC2006v075n07ABEH00361

    Article  CAS  Google Scholar 

  47. Dotsenko, V.V. and Krivokolysko, S.G., Chem. Heterocycl. Comp., 2013, vol. 49, no. 4, p. 636. https://doi.org/10.1007/s10593-013-1291-4

    Article  CAS  Google Scholar 

  48. Encinas, M.J.R., Seoane, C., and Soto, J.L., Lieb. Ann., 1984, no. 2, p. 213. https://doi.org/10.1002/jlac.198419840203

    Article  Google Scholar 

  49. Paniagua, E., Rubio, M.J., Seoane, C., and Soto, J.L., Recl. Trav. Chim. Pays-Bas., 1987, vol. 106, no. 11, p. 554. https://doi.org/10.1002/recl.19871061102

    Article  CAS  Google Scholar 

  50. Krivokolysko, B.S., Dotsenko, V.V., Pakholka, N.A., Dakhno, P.G., Strelkov, V.D., Aksenov, N.A., Aksenova, I.V., and Krivokolysko, S.G., J. Iran. Chem. Soc., 2023, vol. 20, no. 3, p. 609. https://doi.org/10.1007/s13738-022-02688-4

    Article  CAS  Google Scholar 

  51. Osminin, V.I., Mironenko, A.A., Dahno, P.G., Nazarenko, M.A., Oflidi, A.I., Dotsenko, V.V., Strelkov, V.D., Aksenov, N.A., and Aksenova, I.V., Russ. J. Gen. Chem., 2022, vol. 92, no. 11, p. 2235. https://doi.org/10.1134/S1070363222110068

    Article  CAS  Google Scholar 

  52. Dakhno, P.G., Dotsenko, V.V., Strelkov, V.D., Vasilin, V.K., Aksenov, N.A., and Aksenova, I.V., Russ. J. Gen. Chem., 2022, vol. 92, no. 12, p. 2822. https://doi.org/10.1134/S1070363222120337

    Article  CAS  Google Scholar 

  53. Dahno, P.G., Zhilyaev, D.M., Dotsenko, V.V., Strelkov, V.D., Krapivin, G.D., Aksenov, N.A., Aksenova, I.V., and Likhovid, N.G., Russ. J. Gen. Chem., 2022, vol. 92, no. 9, p. 1667. https://doi.org/10.1134/S1070363222090080

    Article  CAS  Google Scholar 

  54. Dotsenko, V.V., Krivokolysko, S.G., Rusanov, E.B., Gutov, A.V., and Litvinov, V.P., Russ. Chem. Bull., 2007, vol. 56, no. 7, p. 1470. https://doi.org/10.1007/s11172-007-0225-7

    Article  CAS  Google Scholar 

  55. Dotsenko, V.V., Krivokolysko, S.G., Shishkina, S.V., and Shishkin, O.V., Russ. Chem. Bull., 2012, vol. 61, no. 11. p., 2082. https://doi.org/10.1007/s11172-012-0291-3

  56. Dotsenko, V.V. and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2014, vol. 50, no. 4, p. 557. https://doi.org/10.1007/s10593-014-1507-2

    Article  CAS  Google Scholar 

  57. Thyagarajan, B.S., Chem. Rev., 1958, vol. 58, no. 3, p. 439. https://doi.org/10.1021/cr50021a001

    Article  CAS  Google Scholar 

  58. Leal, J.M., Garcia, B., and Domingo, P.L., Coord. Chem. Rev., 1998, vol. 173, no. 1, p. 79. https://doi.org/10.1016/S0010-8545(97)00068-4

    Article  CAS  Google Scholar 

  59. Hurd, R.N. and DeLaMater, G., Chem. Rev., 1961, vol. 61, no. 1, p. 45. https://doi.org/10.1021/cr60209a003

    Article  CAS  Google Scholar 

  60. Petrov, K.A. and Andreev, L.N., Russ. Chem. Rev., 1971, vol. 40, no. 6, p. 505. https://doi.org/10.1070/RC1971v040n06ABEH001934

    Article  Google Scholar 

  61. Weekes, A.A. and Westwell, A.D., Curr. Med. Chem., 2009, vol. 16, no. 19, p. 2430. https://doi.org/10.2174/092986709788682137

    Article  CAS  PubMed  Google Scholar 

  62. Keri, R.S., Patil, M.R., Patil, S.A., and Budagumpi, S., Eur. J. Med. Chem., 2015, vol. 89, p. 207. https://doi.org/10.1016/j.ejmech.2014.10.059

    Article  CAS  PubMed  Google Scholar 

  63. Gao, X., Liu, J., Zuo, X., Feng, X., and Gao, Y., Molecules, 2020, vol. 25, article 1675. https://doi.org/10.3390/molecules25071675

  64. Facchinetti, V., da R. Reis, R., Gomes, C.R.B., and Vasconcelos, T.R.A., Mini-Rev. Org. Chem., 2012, vol. 9, no. 1, p. 44. https://doi.org/10.2174/157019312799079929

    Article  CAS  Google Scholar 

  65. Gill, R.K., Rawal, R.K., and Bariwal, J., Arch. Pharm., 2015, vol. 348, no. 3, p. 155. https://doi.org/10.1002/ardp.201400340

    Article  CAS  Google Scholar 

  66. Dotsenko, V.V., Krivokolysko, S.G., Polovinko, V.V., and Litvinov, V.P., Chem. Heterocycl. Compd., 2012, vol. 48, p. 309. https://doi.org/10.1007/s10593-012-0991-5

    Article  CAS  Google Scholar 

  67. Litvinov, V.P., Russ. Chem. Rev. 1999, vol. 68, no. 9, p. 737. https://doi.org/10.1070/RC1999v068n09ABEH000533

  68. Dyachenko, V.D., Dyachenko, I.V., and Nenajdenko, V.G., Russ. Chem. Rev., 2018, vol. 87, no. 1, p. 1. https://doi.org/10.1070/RCR4760

    Article  CAS  Google Scholar 

  69. Schmidt, U. and Giesselmann, G., Chem. Ber., 1960, vol. 93, no. 7, p. 1590. https://doi.org/10.1002/cber.19600930721

    Article  CAS  Google Scholar 

  70. Shishlov, N.M. and Khursan, S.L., J. Mol. Struct., 2016, vol. 1123, p. 360. https://doi.org/10.1016/j.molstruc.2016.06.030

    Article  CAS  Google Scholar 

  71. Dmitrieva, I.G., Dyadyuchenko, L.V., Strelkov, V.D., and Kaigorodova, E.A., Chem. Heterocycl. Compd., 2009, vol. 45, no. 9, p. 1047. https://doi.org/10.1007/s10593-009-0386-4

    Article  CAS  Google Scholar 

  72. Bakke, J.M. and Sletvold, I., Org. Biomol. Chem., 2003, vol. 1, no. 15, p. 2710. https://doi.org/10.1039/B305620A

    Article  CAS  PubMed  Google Scholar 

  73. Lobana, T.S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D., and Isobe, K., Eur. J. Inorg. Chem., 2004, no. 2, p. 356. https://doi.org/10.1002/ejic.200300251

    Article  CAS  Google Scholar 

  74. RumLer, A., Hagen, V., and Hagen, A., Pharmazie, 1990, vol. 45, no. 9, p. 657.

    CAS  PubMed  Google Scholar 

  75. Krause, A.A., RumLer, A., Hagen, F., Jansch, H.J., Shturm, I.G., and Dubur, G.Y., Chem. Heterocycl. Compd., 1992, vol. 28, no. 1, p. 67. https://doi.org/10.1007/BF00529482

    Article  Google Scholar 

  76. Little, C. and O’Brien, P.J., Arch. Biochem. Biophys., 1967, vol. 122, no. 2, p. 406. https://doi.org/10.1016/0003-9861(67)90212-3

    Article  CAS  PubMed  Google Scholar 

  77. Wiberg, K.B., Maltz, H., and Okano, M., Inorg. Chem., 1968, vol. 7, no. 4, p. 830. https://doi.org/10.1021/ic50062a045

    Article  CAS  Google Scholar 

  78. Musah, R.A., Curr. Top. Med. Chem., 2004, vol. 4, no. 15, p. 1605. https://doi.org/10.2174/1568026043387331

    Article  CAS  PubMed  Google Scholar 

  79. Mori, M., Kovalenko, L., Lyonnais, S., Antaki, D., Torbett, B.E., Botta, M., Mirambeau, G., and Mély, Y., Curr. Top. Microbiol. Immunol., 2015, vol. 389, p. 53. https://doi.org/10.1007/82_2015_433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Topol, I.A., Nemukhin, A.V., Dobrogorskaya, Y.I., and Burt, S.K., J. Phys. Chem. B, 2001, vol. 105, no. 45, p. 11341. https://doi.org/10.1021/jp011734g

    Article  CAS  Google Scholar 

  81. Dick, A. and Cocklin, S., Molecules, 2020, vol. 25, no. 7, p. 1687. https://doi.org/10.3390/molecules25071687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. García, C.C., Topisirovic, I., Djavani, M., Borden, K.L., Damonte, E.B., and Salvato, M.S., Biochem. Biophys. Res. Commun., 2010, vol. 393, no. 4, p. 625. https://doi.org/10.1016/j.bbrc.2010.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Narushyavichus, É.V., Garalene, V.N., Krauze, A.A., and Dubur, G.Ya., Pharm. Chem. J., 1989, vol. 23, no. 12, p. 983. https://doi.org/10.1007/BF00764710

    Article  Google Scholar 

  84. Elgemeie, G.E.H., Ali, H.A., and Eid, M.M., J. Chem. Res. Synop., 1993, no. 7, p. 256.

    Google Scholar 

  85. Frolova, N.G., Zav’yalova, V.K., and Litvinov, V.P., Russ. Chem. Bull., 1996, vol. 45, no. 11, p. 2578. https://doi.org/10.1007/BF01431119

    Article  Google Scholar 

  86. Allgrove, R.C., Cort, L.A., Elvidge, J.A., and Eisner, U., J. Chem. Soc. C, 1971, p. 434. https://doi.org/10.1039/J39710000434

  87. Buryi, D.S., Dotsenko, V.V., Aksenov, N.A., Aksenova, I.V., Krivokolysko, S.G., and Dyadyuchenko, L.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 8, p. 1575. https://doi.org/10.1134/S1070363219080061

    Article  CAS  Google Scholar 

  88. Preininger, O., Charamzová, I., Vinklárek, J., Císařová, I., and Honzíček, J., Inorg. Chim. Acta, 2017, vol. 462, p. 16. https://doi.org/10.1016/j.ica.2017.03.008

    Article  CAS  Google Scholar 

  89. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  90. Sheldrick, G.M., Acta Crystallogr. A, 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  91. Sheldrick, G.M., Acta Crystallogr. C, 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the equipment of the scientific and educational center “Diagnostics of the structure and properties of nanomaterials” and the equipment of the center for collective Use “Ecological and Analytical Center” of the Kuban State University.

Funding

The work was carried out with the financial support of the Ministry of education and science of the Russian Federation (project FSRN-2023-0005) and the North-Caucasus federal university (interdisciplinary project “Synthesis and antidote activity against the 2,4-D herbicide of heterocyclic derivatives of methylenactive nitriles” within the framework of the strategic academic leadership program “PRIORITY 2030”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dotsenko.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhno, P.G., Kindop, V.K., Gordeev, K.V. et al. Oxidation of 4,6-Dimethyl-2-thioxo-1,2-dihydropyridine-3-carbonitriles with Potassium Ferricyanide: Synthesis and Molecular Docking of Bis(pyrid-2-yl) Disulfides. Russ J Gen Chem 93, 3043–3054 (2023). https://doi.org/10.1134/S1070363223120034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223120034

Keywords:

Navigation