Skip to main content
Log in

Calculation of the Temperature Profile during the Pressing of a Fiberglass Based on Epoxy Resin and a Latent Hardener

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The thermophysical and physicochemical properties of KMKS-3m.150.T10.37 prepreg and a fiberglass on its basis were investigated. Using multivariate regression methods, the prepreg curing process was studied. It was shown that the experimental dependences can be most adequately described by nth order differential equations for the consumption of the components with auto-acceleration in a three-stage process. Based on the results of the kinetic analysis, the rates of heat generation during prepreg curing in two-stage temperature-time regimes were predicted. Additional heat treatment at a temperature of 150°C afforded a 16°C decrease in the internal temperature (self-heating) of the material. The finite element method was used to calculate the temperature field during the material molding. It was demonstrated that, using the model proposed, the temperature field characteristics can be determined accurately to within 3%. Examination of the distribution of the glass transition temperature of the fiberglass over the volume of the product showed that the difference between the maximum and minimum temperatures may reach 35°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Eselev, A.D. and Bobylev, V.A., Klei. Germet. Tekhnol., 2005, no. 4, pp. 2 – 8.

    Google Scholar 

  2. Bobylev, V.A., Kompoz. Mir, 2006, no. 4, pp. 20–24. http://www.npkstep.ru

    Google Scholar 

  3. Chursova, L.V., Babin, A.N., Panina, N.N., Tkachuk, A.I., and Terekhov, I.V., Trudy Vses. Inst. Aviats. Mater.: Elektron. Nauch.-Tech. Zh., 2016, no. 2, Art. 04. https://doi.org/10.18577/2307-6046-2016-0-6-4-4

  4. Khrul’kov, A.V., Grigor’ev, M.M., and Yazvenko, L.N., Trudy Vses. Inst. Aviats. Mater.: Elektron. Nauch.Tech. Zh., 2016, no. 2, Art. 06. https://doi.org/10.18577/2307-6046-2016-0-2-6-6

  5. Tkachuk, A.I., Chursova, L.V., Panina, N.N., Gurevich, Ya.M., Babin, A.N., and Malkov, G.V., Klei. Germet.. Tekhnol., 2014, no. 11, pp. 2–8.

    Google Scholar 

  6. Kutsevich, K.E., Aleksashin, V.M., Petrova, A.P., and Antyufeeva, N.V., Klei. Germet. Tekhnol., 2014, no. 11, pp. 27–31.

    Google Scholar 

  7. Barinov, D.Ya., Maiorova, I.A., Marakhovskii, P.S., Zuev, A.V., Kutsevich, K.E., and Lukina, N.F., Perspekt. Mater., 2015, no. 4, pp. 5–14.

    Google Scholar 

  8. Marakhovskii, P.S., Ospennikova, O.G., Vorob’ev, N.N., Shorstov, S.Y., Vasyukov, A.N., and Barinov, D.Y., Polym. Sci., Ser. D, 2020, vol. 13, no. 1, pp. 73–79.

    Article  CAS  Google Scholar 

  9. Tager, A.A., Fiziko-khimiya polimerov (Physical Chemistry of Polymers), Moscow: Nauchnyi Mir, 2007.

  10. Marakhovskiy, P.S., Kondrashov, S.V., Gurevich, Y.M., Maiorova, I.A. Shvedkova, A.K., Valevin, E.O., Dyachkova, T.P., and Yurkov, G.Y., Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 5, pp. 515–520.

    Article  Google Scholar 

  11. Kondrashov, S.V., Marakhovskiy, P.S., Maiorova, I.A., Egorov, A.A., Mansurova, I.A., and Yurkov, G.Y., Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 5, pp. 516–521.

    Article  Google Scholar 

  12. Stringer, L.G., Hayman, R.J., Hinton, M.J., Badcock, R.A., and Wisnom, M.R., 12 Int. Conf. on Composite Materials, Paris, July, 1999, 1999.

  13. Laptev, A.B., Nikolaev, E.V., and Kolpachkov, E.D., Aviats. Mater. Tekhnol., 2018, no. 3, pp. 80–88. https://doi.org/10.18577/2071-9140-2018-0-3-80-88

    Article  Google Scholar 

  14. Kablov, E.N. and Startsev, V.O., Deform. Razrush. Mater., 2019, no. 12, pp. 7–16.

    Article  Google Scholar 

  15. Kablov, E.N. and Startsev, V.O., Aviats. Mater. Tekhnol., 2018, no. 2, pp. 47–58. https://doi.org/10.18577/2071-9140-2018-0-2-47-58

    Article  Google Scholar 

  16. Petrova, A.P., Chursova, L.V., and Kogan, D.I., Klei. Germet. Tekhnol., 2016, no. 6, pp. 25–29.

    Google Scholar 

  17. Adeodu, A., Anyaeche, C., Oluwole, O., and Alo, D., Adv. Mater., 2015, vol. 4, no. 5, pp. 85–94.

    Article  Google Scholar 

  18. Kablov, E.N., Aviats. Mater. Tekhnol., 2015, no. 1(34), pp. 3–33. https://doi.org/10.18577/2071-9140-2015-0-1-3-33

    Article  Google Scholar 

  19. Raskutin, A.E., Aviats. Mater. Tekhnol., 2017, no. S, pp. 349–67. https://doi.org/10.18577/2071-9140-2017-0-S-349-367

  20. GOST (State Standard) 29127-91: Plastics: Thermogravimetric Analysis: Temperature Scanning Method, 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Marakhovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marakhovskii, P.S., Khina, M.B., Vorob’ev, N.N. et al. Calculation of the Temperature Profile during the Pressing of a Fiberglass Based on Epoxy Resin and a Latent Hardener. Russ J Gen Chem 92, 1839–1844 (2022). https://doi.org/10.1134/S1070363222090250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222090250

Keywords:

Navigation